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Abstract—Heavy tailed random variables (rvs) have proven to be an essential element in modeling a

wide variety of natural and human-induced processes, and the sums of heavy tailed rvs represent a

particularly important construction in such models. Oriented toward both geophysical and statistical

audiences, this paper discusses the appearance of the Pareto law in seismology and addresses the problem

of the statistical approximation for the sums of independent rvs with common Pareto distribution

F(x)=1 ) x)a for 1/2 < a < 2. Such variables have infinite second moment which prevents one from

using the Central Limit Theorem to solve the problem. This paper presents five approximation techniques

for the Pareto sums and discusses their respective accuracy. The main focus is on the median and the

upper and lower quantiles of the sum’s distribution. Two of the proposed approximations are based on

the Generalized Central Limit Theorem, which establishes the general limit for the sums of independent

identically distributed rvs in terms of stable distributions; these approximations work well for large

numbers of summands. Another approximation, which replaces the sum with its maximal summand, has

less than 10% relative error for the upper quantiles when a < 1. A more elaborate approach considers

the two largest observations separately from the rest of the observations, and yields a relative error under

1% for the upper quantiles and less than 5% for the median. The last approximation is specially tailored

for the lower quantiles, and involves reducing the non-Gaussian problem to its Gaussian equivalent; it

too yields errors less than 1%. Approximation of the observed cumulative seismic moment in California

illustrates developed methods.

Key words: Pareto distribution, Pareto truncated distribution, seismic moment distribution, stable

distributions, approximation of Pareto sums.

1. Introduction

Statistical data analysis, a significant part of modern Earth Sciences research, is

led by the intuition of researchers traditionally trained to think in terms of

‘‘averages,’’ ‘‘means,’’ and ‘‘standard deviations.’’ Curiously, an essential part of

relevant natural processes does not allow such an interpretation, and appropriate

statistical models do not have finite values of these characteristics. Seismology
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presents a superb example of such a situation with one of its fundamental laws,

describing the distribution of the seismic moment (or energy) released in earthquakes

as a power law, having both infinite mean and standard deviation. This paper

addresses the problem of the statistical approximation for sums of power-law

variables, which are used to describe the total seismic moment or energy released by

multiple earthquakes, for example.

In describing natural physical systems, most variables should in principle have an

upper limit, hence the study of tapered or truncated power-law distributions is

important. However, in many cases one observes geophysical variables over

relatively small scales, and in such cases distributions such as the Pareto may

provide adequate representations and are considered crucial elementary tools for

discussion. Moreover, in order properly to reject the fit of the pure Pareto

distribution to seismic data sets, bounds on the sums of Pareto random variables are

an important tool and hence worthy of investigation. In addition, sums of Pareto

variables are of general concern in many other applications including finance, where

the use of the pure Pareto distribution has not generally been invalidated. Further,

whereas for truncated or tapered Pareto random variables classical statistical

approaches provide reasonable estimates, for pure (untruncated, untapered) Pareto

variables such evaluations are unavailable in most cases.

These are the reasons that in this work we mainly address the problem of

evaluating sums of pure Pareto variables, and only in some limited cases do we

consider the sums of tapered or truncated Pareto variables. A more complete and

rigorous investigation of the transitional cases involving sums of tapered Pareto

variables is a task for future work.

1.1 Pareto Distribution

Many natural and human-induced phenomena exhibit power-law behavior: for

instance the power law is observed to approximate the distribution of sizes of

earthquakes and volcanic eruptions, solar-flares, lightning strikes, river networks,

forest fires, extinctions of biological species, war casualties, internet traffic, stock

returns, insurance pay-offs, and cities (see e.g., MANDELBROT, 1983; RICHARDSON,

1960; TURCOTTE, 1997; BARTON and LA POINTE, 1995; SORNETTE, 2003; NEWMAN

et al., 1994); this list can easily be extended. The power-law size distribution implies

that the number NðxÞ of objects of size larger than x decreases as a power of x:

NðxÞ / x�a; a > 0: ð1Þ

The power law is scale-invariant since the scale change y ¼ ax affects only the

normalization constant in (1). Properly normalized, the law (1) is known as the

Pareto distribution, its cumulative distribution function (cdf) F ðxÞ and probability

distribution function (pdf) f ðxÞ are given by

1188 I.V. Zaliapin et al. Pure appl. geophys.,



F ðxÞ ¼ 1� x�a;

f ðxÞ ¼ ax�1�a; x > 1; a > 0:
ð2Þ

In many cases, the distribution (2) appears to fit well to the largest observations,

x > x0, but not for the entire sample. We describe such processes, where the survivor

function 1� F ðxÞ / x�a, as having power-law tails. This description is especially

useful when describing and modeling processes with large deviations, a situation

where one is primarily interested in the largest possible observations, and the

specific distribution of the smaller observations may be neglected. A distribution

that assigns a nonignorable probability to extremely large observations is called

heavy tailed. One refers to a random variable (rv) as heavy tailed if it has an infinite

second moment (infinite variation). For Pareto random variables, this corresponds

to the case 0 < a < 2; for a � 1 a Pareto rv has also infinite first moment

(expectation).

1.2 Earthquake Size Distribution

The distribution of earthquake sizes is described by the well-known Gutenberg-

Richter (GR) magnitude-frequency relation (GUTENBERG and RICHTER, 1941, 1944;

SCHOLZ, 2002):

log10 NðmÞ½ � ¼ a� bm; b � 1; ð3Þ

where NðmÞ is the annual number of earthquakes with magnitude equal or larger

than m. Recalling that earthquake moment magnitude is related to the scalar seismic

moment M (in NM) via (KANAMORI, 1977; BEN-ZION, 2003)

m ¼ 2

3
log10 M � c; ð4Þ

we see that the GR relation is a power law for the number NðMÞ of earthquakes with
seismic moment above M :

NðMÞ / M�a; a ¼ 2

3
b: ð5Þ

In this paper we consider scalar seismic moment as the only quantitative measure of

earthquake size. However, for historical and other reasons we sometimes convert the

moment into moment magnitude, using c ¼ 6 in Eq. (4). Thus in these cases the

moment magnitude is used as a proxy for seismic moment.

Introducing the appropriate normalization, one obtains the Pareto pdf for seismic

moments:

f ðMÞ ¼ aMa
t M�1�a; Mt � M ; ð6Þ

Vol. 162, 2005 Approximating the Distribution of Pareto Sums 1189



where Mt is a catalog completeness threshold (or observational cutoff) and a � 2
3 is

the index parameter of the distribution. In order for the total seismic moment to be

finite, the distribution density must decay faster than M�2. Thus simple consider-

ations of the finiteness of the seismic moment flux or deformational energy available

for earthquake generation (KNOPOFF and KAGAN, 1977) require the Pareto relation

(6) to be modified for large seismic moments. This can be done, for example, by

applying an exponential taper to the survivor function 1� F ðMÞ, so that it takes the

form

1� F ðMÞ ¼ Mt=Mð Þaexp Mt �M
Mc

� �
; Mt � M <1: ð7Þ

Here Mc is the corner moment, a parameter that primarily controls the distribution in

the upper ranges of M (VERE-JONES et al., 2001; KAGAN and SCHOENBERG, 2001;

KAGAN, 2002a). To illustrate the above expressions, Figure 1 displays cumulative
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Figure 1

Number of earthquakes with seismic moment larger than or equal to M as a function of M for the

shallow earthquakes in the Harvard catalog during 1977/1/1–2002/12/31. Power-law approximation

(Gutenberg-Richter law, Eq. 5) is shown by dotted line. Tapered Gutenberg-Richter distribution (Eq. 7)

which is the GR law restricted at large seismic moments by an exponential taper is shown by dashed line.

The slope of the linear part of the curve corresponds to a-value 0:673� 0:011 and the corner moment

Mc ¼ 1:6� 1021 Nm.
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histograms for the scalar seismic moment of shallow earthquakes in the Harvard

catalog (EKSTRÖM et al., 2003) during 1977–2002. The curves display a scale-

invariant (Pareto) segment (linear in the log-log plot) for small and moderate values

of the seismic moment M . But for large M , the curve clearly bends downward.

Although the index parameter for the seismic moment distribution has been

argued to have a universal value a � 2
3 at least for large (m > 5:5) earthquakes (Eqs.

(3), (5); KAGAN, 2002a, b; BIRD and KAGAN, 2004), some geometrical variables which

depend on seismic moments, such as slips during earthquakes, or widths and lengths

of earthquake ruptures, appear to have power-law distributions with varying index

values (KAGAN, 1994; ANDERSON and LUCO, 1983; WELLS and COPPERSMITH, 1994).

Thus it is relevant to consider Pareto random variables with a broad range of indices,

and in this work we consider the range 1=2 � a < 2.

For the reasons explained above, for index a � 1 one is often interested in the

case of the Pareto distribution with an upper bound or taper. MCCAFFREY (1997),

SHEN-TU et al. (1998) and HOLT et al. (2000) considered the statistical bounds for

the sums of upper-truncated Pareto rvs, for the case when several earthquakes

approaching the maximum size are observed. In these cases the distribution of the

sum can be approximated using the Central Limit Theorem (see more in

Section 5). However, in actual earthquake catalogs these largest events are very

rarely observed, so that bounds on the sums must often be estimates even when no

earthquake of size approximately Mc is registered. Similar problems are encoun-

tered in the estimation of the parameters of the seismic moment-frequency law (7).

KAGAN and SCHOENBERG (2001) and KAGAN (2002a) discuss the difficulty of

estimating the corner moment with insufficient data.

1.3 Heavy-Tailed Sums

In many situations one is interested in sums of power-law distributed variables.

For example, the total deformation of rock materials or of the Earth’s surface due to

earthquakes may be modeled as the sum of seismic moment tensors (KOSTROV, 1974;

KAGAN, 2002b), the latter obeying the Pareto distribution; cumulative economic

losses or casualties due to natural catastrophes are modeled as sums of power-law

distributed variables (KAGAN, 1997; PISARENKO, 1998; RODKIN and PISARENKO,

2000); the total pay-off of an insurance company is modeled as the sum of individual

pay-offs, each of which is distributed according to a power law, etc. The Pareto

distribution is the simplest of the heavy-tailed distributions, thus the properties of

Pareto sums are easier to study.

For 0 < a < 2 the second statistical moment of a Pareto rv is infinite which

renders useless many of the conventional statistical techniques commonly used since

the early 19th century. The most prominent of these is the Central Limit Theorem

(FELLER, 1971, 2, VIII, 4), which justifies approximating the sum of independent rvs

by a Gaussian (normal) distribution. The sums of heavy tailed rvs cannot be
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approximated this way. However, such sums, when suitably normalized, typically

approach a well-defined limiting distribution which depends on a. The entire family

of such limits is known as stable probability distributions with parameter a
(SAMORODNITSKY and TAQQU, 1994; UCHAIKIN and ZOLOTAREV, 1999; see also

Section 2.1 below.) The Gaussian distribution is a special case corresponding to

a ¼ 2.

Stable distributions, which (except for the Gaussian case) have power-law tails,

recently became an object of intense mathematical and practical development

(MANDELBROT, 1983; ZOLOTAREV, 1986; UCHAIKIN and ZOLOTAREV, 1999; NOLAN,

2005; RACHEV and MITTNIK, 2000; RACHEV, 2003). Their use is widespread in

physics, finance, and other disciplines. The sums of large numbers of heavy-tailed rvs

are investigated in many publications, especially in finance, and are well described in

terms of stable distributions (MITTNIK et al., 1998; RACHEV and MITTNIK, 2000;

RACHEV, 2003; EMBRECHTS et al., 1997). However, little is known about the

distribution of the sum of an arbitrary (intermediate to small) number of Pareto rvs.

1.4 Approximation Problem

The aim of this study is to approximate the distribution of Pareto sums with

arbitrary numbers of summands. Formally, let Xi; i ¼ 1; . . . ; n be independent

identically distributed (iid) rvs with a common Pareto distribution (2), and let Sn

denote their sum

Sn ¼
Xn

i¼1
Xi: ð8Þ

We seek to approximate certain quantiles zqðnÞ of Sn:

Prob Sn < zqðnÞ
� �

¼ q; 0 � q � 1; n > 1; ð9Þ

where Prob fAg means the probability of event A. The median z1=2 as well as lower

and upper bounds zq, z1�q, for q� 1, are of special interest. As mentioned above, the

problem becomes non-trivial for 0 < a < 2 when Xi have infinite second moments;

for 0 < a � 1 these rvs also have infinite expectation.

The remainder of this paper is organized as follows. In Section 2 we construct

two approximations for the sum (8) by using stable distributions. Stable

distributions are discussed in more detail in Section 2.1; this discussion should

help to provide a basic understanding of these complex distributions which

sometimes display quite counter-intuitive behavior. Section 3 describes a different

approach, involving the use of the distribution of the largest observation to

approximate that of the entire sum (8). It is shown that for a < 1 this seemingly

crude replacement may result in fairly good approximations for the upper

(1� q � 0:95) quantile. The results of Sections 2–3 are asymptotic; they give good

approximations for the sums of a large number n of summands. However, unlike
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the Gaussian case, when ‘‘large’’ typically means n > 30, the sum of heavy-tailed

variables sometimes converges very slowly, so that a sufficient number of

summands allowing one to apply the asymptotics may in some cases be greater

than n ¼ 104. To address this problem, Section 4 describes two techniques specially

tailored for approximating the sum Sn of an arbitrary number n of summands.

Section 4.1 introduces an approach based on the analysis of order statistics to

approximate the median and upper quantiles of Sn. Section 4.2 shows how to

transform our non-Gaussian problem to a Gaussian equivalent and use the Central

Limit Theorem to approximate the lower quantile. Approximation for the sum of

truncated Pareto rvs is considered briefly in Section 5. The study’s results are

discussed in Section 6. We keep in the main text only the essential formulae; the

detailed mathematical derivations are placed in Appendices.

2. Approximating by Stable Distributions

In this section we approximate Pareto sums with stable distributions, which is

advocated by the Generalized Central Limit Theorem discussed in Section 2 below.

We start with a brief discussion of stable distributions and their basic properties.

2.1 Univariate Stable Distributions

Stable distributions are a rich class of probability distributions that allow

skewness (asymmetry), heavy tails and have many intriguing mathematical properties

(ZOLOTAREV, 1986; SAMORODNITSKY and TAQQU, 1994; UCHAIKIN and ZOLOTAREV,

1999). A random continuous variable X is said to have a stable distribution if for any

n � 2, there is a positive number Cn and a real number Dn such that

X1 þ X2 þ 	 	 	 þ Xn¼
d

Cn X þ Dn; ð10Þ

where X1;X2; . . . ;Xn are independent realizations of X , and ¼d means that the

variables have the same distribution. This property makes stable distributions of

special importance when working with sums of rvs. The lack of closed formulas for

densities and distribution functions for all but a few stable distributions (Gaussian,

Cauchy and Lévy) has been a major drawback to the use of stable distributions by

practitioners. There are now reliable computer programs to compute stable densities,

distribution functions and quantiles (NOLAN, 1997; MCCULLOCH and PANTON, 1997,

1998). With these programs, it is possible to use stable models in a variety of practical

problems.

Different authors have provided several quite distinct representations for stable

distributions (see Introduction in ZOLOTAREV, 1986; pp. 7–9 in SAMORODNITSKY and

TAQQU, 1994; Section 3.6 in UCHAIKIN and ZOLOTAREV, 1999), which complicates the
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practical use of these distributions and often leads to confusion (HALL, 1981).

Moreover, there are many misprints and other errors in published formulae for stable

distributions (see, for instance, remark 2.12 in ZOLOTAREV, 1986). Below we use only

the expressions which have been tested by comparing with tabulated values

(McCULLOCH and PANTON, 1997, 1998).

Stable distributions have been proposed as a model for many types of physical

and economic systems. There are several reasons for using a stable distribution to

describe a system. The first is the presence of solid theoretical reasons for expecting

non-Gaussian stable behavior, e.g. reflection of a rotating mirror yielding the Cauchy

distribution, hitting times for a 1-D Brownian motion yielding the Lévy distribution,

the gravitational field of stars yielding the Holtsmark 3-D distribution, or the stress

distribution in a solid with defects following the Cauchy law (see FELLER, 1971 and

UCHAIKIN and ZOLOTAREV, 1999 for other examples). The second reason is the

Generalized Central Limit Theorem (see Section 2.2, Eq. (19)) which states that the

only possible non-trivial limit of normalized sums of continuous iid terms is a stable

law. Some observed quantities are posited to be the sum of many individual terms —

the price movements of a stock, the noise in a communication system, etc., and hence

a stable model may be used to describe such systems. A third argument for the use of

stable distributions in modeling physical systems is empirical: many large data sets

exhibit heavy tails and skewness. The strong empirical evidence for these features

combined with the Generalized Central Limit Theorem is used by many to justify the

use of stable models.

The univariate stable distribution is generally characterized by four parameters:

its index a, the parameter b characterizing the degree of skewness, a scale parameter,

and a shift parameter (SAMORODNITSKY and TAQQU, 1994). In this work we will

consider only normalized stable distributions with the scale parameter equal to 1.0

and the shift parameter equal to zero. Moreover, since the Pareto variables we

consider here are positive, the sums of these variables converge to a maximally

asymmetrical (maximally-skewed) stable distribution, corresponding to b ¼ 1. Thus,

the stable variables considered below depend only on one parameter a, and their pdf

and cdf are denoted as fa and Fa, respectively.

In Figure 2 we show an example of the pdf for the stable distribution with index

a ¼ 2=3 (15) and a corresponding Pareto distribution. The stable distributions with

a < 1 and b ¼ 1 are concentrated on the positive x-axis, whereas maximally-skewed

distributions with a � 1 and b ¼ 1 have support over the whole x-axis.
Recall that the standard Gaussian (normal) cdf with expectation l and standard

deviation r is given by

U x; l; r2
� �

¼ 1

r
ffiffiffiffiffiffi
2p
p

Z x

�1
exp �ðy � lÞ2

2r2

 !
dy: ð11Þ
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The Gaussian stable distribution, a ¼ 2, for which the skewness index b is not

defined, is usually written in a slightly different form: F2ðxÞ ¼ U x; 0; 2ð Þ so its pdf

becomes

f2ðxÞ ¼
1

2
ffiffiffi
p
p exp � x2

4

� �
: ð12Þ

Only one of the stable maximally-skewed distributions, the Lévy, with a ¼ 1=2, can

be expressed through elementary functions. This distribution has density

f1=2ðxÞ ¼
1

x
ffiffiffiffiffiffiffiffi
2px
p exp � 1

2x

� �
; ð13Þ

and cdf

F1=2ðxÞ ¼ 2 1� U
1ffiffiffi
x
p ; 0; 1

� �� 	
; ð14Þ

where U is defined in (11).

Two more maximally-skewed distributions, for a ¼ 2=3 and a ¼ 3=2, can be

expressed through special functions (ZOLOTAREV, 1954):
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Probability density functions for the stable (Eq. 15, solid line) and Pareto (Eq. 2, dashed line) distributions,

both with a ¼ 2=3
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f2=3ðxÞ ¼
ffiffiffi
3
p

x
ffiffiffi
p
p exp � 16

27x2

� �
W1=2;1=6

32

27x2

� �
for x > 0; ð15Þ

where W1=2;1=6 is a Whittaker function (GRADSHTEYN and RYZHIK, 1980, p. 1059).

The Whittaker function Wk;lðzÞ can be calculated using the confluent hypergeometric

function Uða; b; zÞ (WOLFRAM, 1999, pp. 770–771)

Wk;lðzÞ ¼
z0:5þlU 0:5� k þ l; 1þ 2l; zð Þ

e0:5 z : ð16Þ

Similar expressions for f3=2ðxÞ are (ZOLOTAREV, 1954)

f3=2ðxÞ ¼ �
ffiffiffi
3
p

x
ffiffiffi
p
p exp

x3

27

� �
W1=2;1=6 �

2x3

27

� �
for x < 0; ð17Þ

and

f3=2ðxÞ ¼
1

2x
ffiffiffiffiffiffi
3p
p exp

x3

27

� �
W�1=2;1=6

2x3

27

� �
for x > 0: ð18Þ

The cumulative functions for distributions (15), and (17, 18) can be obtained by

numerical integration (WOLFRAM, 1999).

Though stable distributions usually cannot be summarized via elementary

functions, their tails often allow fairly simple approximations given in Appendix A.

These approximations may be useful for q close to 0 or 1.

2.2 Generalized Central Limit Theorem Approximation

Statistical inference relevant to the sum (8) can be made using the Generalized

Central Limit Theorem (GCLT) (SAMORODNITSKY and TAQQU, 1994, p. 50;

UCHAIKIN and ZOLOTAREV, 1999, p. 62), which states that the properly normalized

sum Sn (8) of a large number n of iid Pareto rvs with common distribution (2) may be

approximated by a stable distribution:

lim
n!1

Prob
Sn � bn

n1=aCa
< x


 �
¼ FaðxÞ; ð19Þ

where FaðxÞ is a stable cdf with index a. The normalization and shift coefficients are

given by (see Appendix B)

Ca ¼
Cð1� aÞ cos pa=2ð Þ½ �1=a; a 6¼ 1,

p=2; a ¼ 1;

(
ð20Þ

bn ¼

0; 0 < a < 1,

pn2
2

R1
1

sin 2x
pn

� �
dF ðxÞ; a ¼ 1,

na=ða� 1Þ; 1 < a < 2,

8>><
>>:

ð21Þ
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where CðxÞ is the gamma function. The integral in (21) for a ¼ 1 can be expanded as

(GRADSHTEYN and RYZHIK, 1980, Eqs. 3.761.3, 8.230.2)

bn ¼ n log nþ n
pn
2
sin

2

pn

� �
� C � log

2

p
�
Z2=ðpnÞ

0

cos t � 1

t
dt

2
64

3
75

ffi n log nþ n 1� C � log
2

p

� 	
; ð22Þ

where

C � 0:5772 . . . ð23Þ

is the Euler constant.

It follows from the GCLT (19) that an arbitrary quantile zq (9) of the sum Sn can

be approximated as

zq � zð1Þq � n1=axqCa þ bn; ð24Þ

where xq solves the equation

FaðxqÞ ¼ q: ð25Þ

In some cases, the applicability of the approximation zð1Þq is seriously affected by the

low convergence rate in the GCLT (19); we investigate the quality of this

approximation in detail in Section 2.3 below.

An approximation for upper quantiles z1�q, q < 0:05, can be obtained by noticing

that the tail 1� FaðxÞ of a stable distribution has a simple asymptotic (SAMOROD-

NITSKY and TAQQU, 1994; UCHAIKIN and ZOLOTAREV, 1999):

lim
x!1

xa 1� Fað Þ ¼ C�a
a ; ð26Þ

where Ca is defined by (20). Applying the GCLT for the tail

lim
n!1

Prob
Sn � bn

n1=aCa
> x


 �
¼ 1� FaðxÞ; ð27Þ

and equating the probability in (27) to q, one obtains

zð2Þq � n1=aq�1=a þ bn; ð28Þ

where bn is defined in (21), (22).

The approximation zð2Þq is easier to use than zð1Þq since the former is written in a

closed form and does not involve solving the equation (25). This convenience is

achieved at a price: zð2Þq only provides a satisfactory approximation for the upper

quantiles, while zð1Þq is applicable for any value of q.
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2.3 Evaluating Approximation Quality

The quality of the approximation zð1Þq (Eq. 24) may be evaluated by simulating the

sums of Pareto rvs with different a-values. Note that the result depends essentially on

the quality of the approximation (Eq. 19), so in assessing this approximation, we are

simultaneously evaluating the convergence rate in the GCLT.

Simulation of Pareto rvs is especially easy since a synthetic realization may be

constructed via

Xi ¼ R�1=a; ð29Þ

where R is a rv uniformly distributed in the interval ð0; 1�. For each fixed value of n
and a we simulated � 106 realizations of the sum Sn to compute its quantiles zq (9).

We define an approximation’s relative error as

Dð1Þq ¼ zð1Þq =zq � 1: ð30Þ

To abbreviate the notation, we do not explicitly note the dependence on n and a of

the quantiles and their approximations and errors.

As mentioned previously, the approximation of Sn using the GCLT requires a

very large number of summands. For instance, Figure 3 displays the quality of the

approximation zð1Þq for a ¼ 1=2 and n ¼ 1000. Even for 1000 summands, disagree-

ments between the distribution of the sum and its approximation are easily discerned.

This disagreement is even larger for smaller values of x (not shown in the figure).

Indeed, the relative errors Dð1Þq for the upper quantiles approach the limit of zero

rather quickly as the number n of summands increases, whereas for lower quantiles

the convergence is quite slow. This is demonstrated in Figure 4, which shows the

dependence of the relative error Dð1Þq for q ¼ 0:02 and 0:98 on the number n of

summands for a ¼ 2=3 and a ¼ 1:5. We follow MCCULLOCH and PANTON (1997) in

evaluating the quantiles 0:02 and 0:98 rather than the more commonly used 0:025

and 0:975.

Such behavior is easy to understand in light of Figure 2. The upper tail of the

Pareto distribution decays as x�a, similar to the decay of the upper tail of the stable

distribution. On the other hand, the lower tail of the Pareto distribution has an

abrupt truncation at x ¼ 1 (see Eq. 2), whereas the stable distributions are smooth

everywhere. Thus, a large number of variables must be summed in order for the

lower quantiles of Sn to be reasonably approximated by those of Fa.

Table 1 collects the simulation results for selected values of a. Synthetic values of
the sum are compared to stable quantiles as tabulated in MCCULLOCH and PANTON

(1997), except for a ¼ 2=3 where we calculate Fa by integrating (15). The stable

distribution approximates the Pareto sum upper 0.98 quantile quite well: only for a
approaching 1.0 and 2.0 from below does the number of summands necessary to

achieve 10% relative accuracy exceed two. As mentioned above, the approximation
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deteriorates substantially for the lower quantile: even in the best cases several dozens

of summands are needed to yield < 10% relative error.

Table 2 (columns 6, 8, and 10) shows the relative error Dð1Þq of the approximation

zð1Þq for selected values of a, q, and relatively small values of n. In each case Sn is

calculated by using 107 simulated Pareto summands (thus 107n values are drawn

from the Pareto distribution). The error Dð2Þq of the approximation zð2Þq is given in the

eleventh column.

3. Replacing the Sum with the Maximum

Approximation of the sums of Pareto rvs can be obtained by noticing that in

many important cases the largest of n such observations, Mn, has the same order of

magnitude as the entire sum Sn.

To gather some intuition, let us define

rn ¼ Sn=Mn: ð31Þ
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Figure 3

Quality of approximation zð1Þq , Eq. (24) (stable distribution approximation). Solid line — cdf for simulated

Pareto sum, n ¼ 1000, dashed line — calculation by (14), circles — from MCCULLOCH and PANTON (1997)

tables.
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In the case of iid Pareto summands, the expectation of the ratio rn takes the form

(see Appendix C)

EðrnÞ ¼
1� nB n; a�1

� �� 
=ð1� aÞ; a 6¼ 1

Pn
k¼1 1=k; a ¼ 1;

(
ð32Þ

where Bð	; 	Þ is the beta function.

For a ¼ 2=3 this expression can be simplified (ABRAMOWITZ and STEGUN, 1972,

Eq. 6.1.12) as

EðrnÞ ¼ 3 1� 2nn!

ð2nþ 1Þ!!

� 	
; ð33Þ

where we use the standard notation ð2nþ 1Þ!! ¼ 1 	 3 	 . . . ð2nþ 1Þ. It is easy to derive

the asymptotics of EðrnÞ as n!1:

EðrnÞ ffi
1=ð1� aÞ; a < 1

n1�1=aCð1=aÞ=ða� 1Þ; a > 1
C þ logðnÞ; a ¼ 1;

8<
: ð34Þ

Table 1

Number n of summands necessary to approximate the sum Sn by stable distributions (z(1)q ) with error

D(1)
q 0.1

Quantile

a 0.02 0.50 0.98

0.50 20 " 2 " 2 #
0.60 25 # 3 # 2 #
0.66 270 # 18 # 2 #
2/3 320 # 25 # 2 #
0.80 > 10000 # 3000 # 2 #
0.90 >> 10000 # > 10000 # 8 #
0.94 >> 10000 # >> 10000 # 2000 #
0.98 >> 10000 # >> 10000 # >>10000 #
1.00 55 " 2 # 2 #
1.02 65 " 2 # 2 #
1.10 75 " 2 # 2 #
1.20 85 " 2 # 2 #
1.30 100 " 2 # 2 #
1.50 140 " 2 # 3 #
1.66 230 " 2 # 8 #
1.80 300 " 3 # 30 #
1.90 1000 " 6 # 35 #
1.94 1800 " 7 # 500 #
1.98 6500 " 9 # 4000 #

" means that the value is approached from below; # means that the value is approached from above.
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where C is given by (23). In Figure 5 we display dependence of EðrnÞ on the number n
of summands using a ¼ 2=3. The asymptotic value EðrnÞ ¼ 3 is reached relatively

slowly: for n ¼ 100, EðrnÞ ¼ 2:73; and even for n ¼ 1000, EðrnÞ ¼ 2:92.

For a < 1 the coefficient rn is on the order of unity which means that the major

contribution to the sum Sn is made by the maximal observation Mn. It is important to

note, however, that the variation of rn may be significant. To illustrate the relation

between Sn and Mn we show their scatterplot in Figure 6 for a ¼ 2=3, n ¼ 1000. One

can see that departures from the relation Sn � Mn=ð1� aÞ suggested by (31, 34) are

significant, especially at the lower and upper tails of Sn and Mn. Moreover, for any

fixed value of Sn or Mn the ratio rn varies substantially.

Figure 6 suggests the possibility of approximating the upper quantiles of Sn with

those of Mn, since one clearly sees that the largest possible values of the sum lie close

to the line Sn ¼ Mn. Using the well-known distribution of the maximum (FELLER,

1971):

Prob Mn < xf g ¼ F nðxÞ ¼ 1� x�að Þn; ð35Þ

one can approximate the distribution of the normalized sum as

Figure 5

Dependence of EðrnÞ on the number n of Pareto summands with a ¼ 2=3.
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Prob
Sn

Can1=a
< z


 �
� Prob

Mn

Can1=a
< z


 �
� exp � zCað Þ�af g: ð36Þ

Equating the probability (36) to q and adding the shift bn (21), which is important for

a � 1, we obtain

zð3Þq ¼ n1=a logð1=qÞ½ ��1=aþbn: ð37Þ

The relative error Dð3Þq of this approximation is shown in column 12 of Table 2. One

sees that for a < 1 the approximation is quite close, whereas for a > 1 the relative

errors are large.

4. More Precise Techniques

This Section develops techniques that allow one to approximate the sums Sn with

a higher degree of accuracy (relative error < 1%) for an arbitrary number n of

summands.
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Figure 6

Value of the sum Sn vs. the maximal summand Mn for the Pareto distribution with a ¼ 2=3, the number of

summands n ¼ 1000. Lower line is Sn ¼ Mn, the upper line is Sn ¼ Mn=ð1� aÞ
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4.1 Approximating the Median and Upper Bound

Here we expand on the idea of using the largest observations to approximate the

sum (8) of Pareto rvs. Our approach is based on considering the variational series

X1;n � X2;n � 	 	 	 � Xn;n ð38Þ

formed by the order statistics X1;n ¼ min X1; . . . ;Xnf g, . . ., Xn;n ¼ max X1; . . . ;Xnf g.
Introducing the notations

Sk;n ¼
Xk

i¼1
Xi;n; Tk;n ¼

Xn

i¼kþ1
Xi;n; k � n ð39Þ

we may rewrite (8) as

Sn ¼
Xp

i¼1
Xi;n þ

Xn

i¼pþ1
Xi;n ¼ Sp;n þ Tp;n: ð40Þ

Essential properties of this representation follow from the following result.
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Figure 7

Relative errors Dð5Þq for the approximation zð5Þq with p ¼ q1=2 (dashed line) and p given by (64) (dotted line)

as functions of the number of summands n, for a ¼ 2=3 and q ¼ 0:02.
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Theorem 1. The m-th moment E Xk;n
� �m

of the k-th order statistic from Pareto

distribution (2) is finite for m < aðn� k þ 1Þ and is given by

EX m
k;n ¼

n! C n� k þ 1� m=að Þ
ðn� kÞ! C nþ 1� m=að Þ : ð41Þ

The joint second moment EðXr;nXs;nÞ, r > s is finite if

min n� r þ 1; ðn� sþ 1Þ=2f g > 1=a;
and is given by

E Xr;nXs;n
� �

¼ n! C n� r þ 1� 1=að ÞC n� sþ 1� 2=að Þ
ðn� rÞ! C n� sþ 1� 1=að ÞC nþ 1� 2=að Þ : ð42Þ

Proof. See NEVZOROV (2001, Assignment 6.2.)

An important consequence of Theorem 1 is the following

Corollary 1. If p ¼ n� bm=ac, where bxc is the integer nearest to x from below, then all

the summands in Sp;n have finitem-thmoment, and all the summands in Tp;n have infinitem-

th moment.

As follows from this corollary, the number nm ¼ bm=ac of order statistics with

infinite m-th moments does not depend on the sample size n. Seemingly counter-

intuitive, this fact is well known in statistics (see SEN, 1959); its direct proof is given in

Appendix D. Importantly, for 1=3 < a < 1 there are no more than two (upper) order

statistics with infinite mathematical expectations, and for 2=3 < a < 1 there are only

two (upper) order statistics with infinite second moment.

Below we use the representation (40) with p ¼ n� 2 which gives

Tn�2;n ¼ Xn�1;n þ Xn;n. Recalling that order statistics obey the Markov property

(NEVZOROV, 2001, Remark 4.3.)

Prob Xkþ1;n < xjX1;n; . . . ;Xk;n
� �

¼ Prob Xkþ1;n < xjXk;n
� �

; ð43Þ
and for the common distribution F ðxÞ of Xi

Prob Xkþ1;n > xjXk;n ¼ u
� �

¼ 1� F ðxÞ
1� F ðuÞ

� �n�k

; ð44Þ

one can prove the following result.

Theorem 2. The sum Tn�2;n of the upper two order statistics of n Pareto rvs has the

following distribution:

T ðx; a; nÞ ¼ Prob Xn�1;n þ Xn;n < x
� �

¼ nðn� 1Þa2
Zx

2

Zz=2

1

y�a�1ðz� yÞ�a�1 1� y�að Þn�2 dydz ð45Þ

1206 I.V. Zaliapin et al. Pure appl. geophys.,



¼ nðn� 1Þa2
Xn�2
k¼0
ð�1ÞkCk

n�2

Zx

2

z�aðkþ2Þ�1B 1=z; 1=2;�aðk þ 1Þ;�að Þ dz; ð46Þ

where B x0; x1; a; bð Þ is the generalized incomplete beta function (WOLFRAM, 1999)

B x0; x1; a; bð Þ ¼
Zx1

x0

ta�1ð1� tÞb�1dt: ð47Þ

Proof. See Appendix E.

The Markov property (43) can be used as well to derive the distribution of a

larger number of the upper order statistics. We restrict ourselves to the upper two

order statistics and now proceed with the sum Sn�2;n of the lower ðn� 2Þ order
statistics. Using (41), (42) we find that for a � 1=2 the sum Sn�2;n has finite

expectation

m1ða; nÞ ¼
Xn�2
k¼1

n! C n� k þ 1� 1=að Þ
ðn� kÞ! C nþ 1� 1=að Þ : ð48Þ

For a > 2=3 it also has finite second moment

m2ða; nÞ ¼
Xn�2
k¼1

n! C n� k þ 1� 2=að Þ
ðn� kÞ! C nþ 1� 2=að Þ

þ 2
Xn�2
r¼2

Xr�1
s¼1

n! C n� r þ 1� 1=að ÞC n� sþ 1� 2=að Þ
ðn� rÞ! C n� sþ 1� 1=að ÞC nþ 1� 2=að Þ : ð49Þ

For a ¼ 1=2 and 1 the expressions (48), (49) can be simplified:

m1 1; nð Þ ¼ n
Xn�1
k¼2

1

k
¼ n C � 1þ logðn� 1Þ þ oð1Þð Þ; ð50Þ

m1 1=2; nð Þ ¼ nðn� 2Þ; ð51Þ
m2 1; nð Þ ¼ nðn� 2Þ þ 2nðn� 1Þ

� logðn� 2Þ C � 1þ logðn� 2Þð Þ �
Xn�2
j¼2

logðj� 1Þ
j

þ o logðnÞð Þ
" #

: ð52Þ

In particular, it follows that for a ¼ 1, as n!1,

m1ð1; nÞ ¼ n logðnÞ þ oðn logðnÞÞ;

m2ð1; nÞ � m2
1ð1; nÞ ¼ Var Sn�2;n

� �
¼ n2½logðnÞ�2 þ o n2½logðnÞ�2

n o
:

ð53Þ

To obtain bounds on the distribution of Sn�2;n, we note that its summands can be

considered iid rvs with the common distribution
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Prob Y < xf g ¼ Prob Xi < xjXi < Xn�1;n
� �

: ð54Þ

From Theorem 1 it follows that for a > 2=3 they have finite first and second

moments, and one may apply the Central Limit Theorem (FELLER, 1971, 2, VIII, 4)

to obtain

Corollary 2.For a > 2=3 the sum Sn�2;n of the ðn� 2Þ lower order statistics of n Pareto

rvs converges in probability, as n!1, to a normally distributed rv with first two

moments m1ða; nÞ, m2ða; nÞ given by (48), (49).

Thus, to approximate the sum Sn we propose the representation (40) with

p ¼ n� 2. Then the distribution of Tn�2;n is given by Theorem 2, while Sn�2;n allows

the normal approximation of Corollary 2. The median z1=2 and the upper quantile zq,

q > 0:95 of Sn are approximated as

zð4Þ1=2 ¼ m1ða; nÞ þ T�1ð1=2; a; nÞ; ð55Þ

zð4Þq ¼ m1ða; nÞ þ jða; nÞ þ T�1ðq; a; nÞ; ð56Þ

where

jða; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ða; nÞ � m2

1ða; nÞ
q

; a > 2=3,

0; a � 2=3.

(
ð57Þ

Both of these approximations involve inversion of the distribution T ðx; a; nÞ, which
must be done numerically. Numerical integration is more efficient using the

representation (45) of Theorem 2. The relative errors Dð4Þq of these approximations

are shown in columns 9 and 13 of Table 2. The approximations appear to be very

close for all values of a < 2, even for small numbers of summands. For n ¼ 2, m1 and

m2 become zero and approximations zð4Þ coincide with theoretical quantiles of the

distribution T .
In constructing the approximations zð4Þ we obtain the exact quantiles for the sum

of the upper two statistics Tn�2;n by inverting its distribution T , and assume that, due

to the normal asymptotic of Corollary 2, the quantiles of Sn�2;n, can be expressed via

its first two moments. For instance, in (55) the median of Sn�2 is naturally

approximated by the mathematical expectation m1ða; nÞ. Indeed, such a construction

is seriously affected by the fact that Sn�2;n and Tn�2;n are statistically dependent rvs, so

the direct summation of their quantiles is a purely heuristic device. We notice though

that for a < 1 the major contribution to the sum Sn is made by the two upper

statistics, Tn�2;n, while the contribution from the rest of the summands (Sn�2;n)

becomes negligible, and so does their statistical variation. On the other hand, for

a > 1, the contribution from Tn�2;n becomes less important compared to that of the

large number of summands in Sp;n. In both cases, the statistical variation of one of

the terms in (40) is negligible compared to the second one, consequently the direct

summation of their quantiles results in a reasonable approximation.
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4.2 Approximating the Lower Bound

An approximation for the q-quantile zq (9) of the sum Sn, for small q, may be

constructed based on the following idea. For any value yn,

Prob Sn < zq
� �

¼ Prob Sn < zqjMn � yn
� �

Prob Mn � ynf g
þ Prob Sn < zqjMn > yn

� �
Prob Mn > ynf g:

ð58Þ

The term Prob Sn < zqjMn � yn
� �

in (58) can be approximated using the Central

Limit Theorem (FELLER, 1971, 2, VIII, 4), since the variables being summed are now

truncated and hence have finite moments. The resulting approximation will be close

for sufficiently small values of yn and sufficiently large n. At the same time, for any

reasonably large value of yn, and for small q, the quantity Prob Sn < zqjMn > yn
� �

in

(58) will be infinitesimal; hence the entire final term in (58) may be considered

negligible. Thus, in approximating zq, we suggest choosing an appropriate value of

yn, and considering the approximation

Prob Sn < zq
� �

� Prob Sn < zqjMn � yn
� �

Prob Mn � ynf g

� U
zq � nlyn

ryn

ffiffiffi
n
p ; 0; 1

� �
Prob Mn � ynf g; ð59Þ

where U is the standard normal distribution function (11), and

ly ¼ E X1jX1 � y½ � ¼
a

1�a y1�a � 1
� �

= 1� y�að Þ; a 6¼ 1,

logðyÞ= 1� y�1
� �

; a ¼ 1,

(
ð60Þ

r2
y ¼ V X1jX1 � y½ � ¼

a
2�a y2�a � 1
� �

= 1� y�að Þ � l2
y ; a 6¼ 2,

2 logðyÞ= 1� y�2
� �

� l2
y ; a ¼ 2

(
ð61Þ

are the conditional mean and variance of each summand, given the restriction on the

maximum.

Note that there is a tradeoff in choosing yn in (59): if one selects too small a value

of yn, then the term Prob Sn < zqjMn > yn
� �

in (58) is not negligible, thus the

resulting approximation may not be satisfactory. On the other hand, if yn is too large,

then the approximation of Prob Sn < zqjMn < yn
� �

using the Central Limit Theorem

may be unsatisfactory; this is particularly true for small n.
One option is to choose some value p to represent the probability

Prob Sn < zqjMn � yn
� �

in (59). Then for sufficiently small values of q as defined

in (9), one has q=p ¼ Prob Mn � ynf g ¼ 1� ð 1yn
Þa

n on
, and solving this for yn one

obtains

yn ¼ 1� ðq=pÞ1=n
h i�1=a

: ð62Þ
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The Central Limit Theorem approximation in (59) then yields

zð5Þq ¼ ryn

ffiffiffi
n
p

U�1 pð Þ þ nlyn
; ð63Þ

where lyn
and ryn are given by (60–61), and yn is given by (62).

A naive choice for p is
ffiffiffi
q
p

; this seems to balance the aforementioned tradeoff,

since then Prob Sn < zqjMn � yn
� �

¼ Prob Mn � ynf g ¼ ffiffiffi
q
p

. Using simulations, one

may obtain approximations of various quantiles and determine, for each such

simulated quantile, the optimal choice of p. We found that inspection of plots of

optimal choices of p versus q, n, and a (not shown) revealed nearly quadratic

variation with q, and approximately threshold relationships with n and a, suggesting
the following formula as a possible choice of p:

p ¼ 0:136þ 0:235qþ q2 þ 0:0066minðn; 10Þ � 0:05maxða; 1Þ: ð64Þ

Equation (64) was derived essentially by trial-and-error and is not meant to reflect an

optimal choice of p, but rather a simple summary of the relationships observed

between p, q, n, and a which may be useful in practice.

The dotted curve in Figure 7 shows the relative errors, as a function of n, for the
resulting approximation zð5Þq with p given by (64). For comparison, the dashed curve

in Figure 7 shows relative errors for the solution to (63) with p ¼ ffiffiffi
q
p

. Here a ¼ 2=3

and q ¼ 0:02; the results for other values of a and other small values of q are similar.

The values reported in column 7 of Table 2 reflect the approximation zð5Þq with p

as in (64). One sees that the approximation matches the true quantile quite closely,

with relative errors consistently less than 1%, even for small n.

5. Cumulative Pareto Sums: Linear vs. Nonlinear Regimes

As mentioned in Section 1.2, it is important to consider the case of the Pareto

distribution with an upper bound or taper, especially for a � 1:0. An example of such

a distribution is shown in Figure 1, which demonstrates that an exponential taper

applied to the cdf of the Pareto distribution results in a close approximation to the

empirical distribution of seismic moments. A commonly employed alternative is to

use a Pareto distribution that is simply truncated at some value y; the corresponding
cdf is

F ðxÞ ¼ 1� x�a

1� y�a
; 1 < x � y: ð65Þ

For the truncated Pareto distribution, simulated values may be constructed via

Xi ¼ R 1� y�a½ � þ y�af g�1=a; ð66Þ
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where R is a uniform rv as in (29). The ratio EðrnÞ ¼ E Sn=Mnð Þ for the truncated

Pareto distribution and a < 1 can be evaluated as in (32), and is given in Appendix C,

Eq. (94).

Figure 8 displays an example of simulated sums (Sn) for the Pareto distribution

with a ¼ 0:66 truncated at y ¼ 3:4� 104 compared to the stable distribution

quantiles. The upper quantiles depart from the theoretical curve for the stable

distribution starting with n ¼ 2, whereas the behavior of the lower quantile is

essentially unaffected by the truncation until n exceeds 103.

When the number of summands is large, the truncation point y dominates the

behavior of the quantiles. The sum is then distributed asymptotically according to

the Gaussian law:

lim
n!1

FSnðxÞ ¼ U
x� nly

ry
ffiffiffi
n
p ; 0; 1

� �
; ð67Þ
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Figure 8

Quantiles for the sum Sn of truncated Pareto variables (upper limit y ¼ 3:4� 104, Eq. 65) and their

approximations as functions of the number of summands, n. Two approximations are considered: via the

stable distribution, Eq. (24) (dashed lines) and Gaussian, Eq. (67) (dotted lines). Solid lines represent

quantiles of simulated Pareto sums. The upper three curves are for the 0.98 quantile, middle three curves

are for the median, and lower three curves are for 0.02 quantile.
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where U is the normal cdf (11), and the parameters ly and ry are given by (60), (61).

In Figure 8 the Gaussian approximation for the truncated Pareto sums is shown to

provide a satisfactory approximation to the sum of truncated Pareto rvs, when the

number n of terms being summed exceeds 500.

The median of the distribution of Sn for truncated Pareto rvs increases

non-linearly with n: for n < 100 the median increases at a rate proportional to n1=a

(PISARENKO, 1998; RODKIN and PISARENKO, 2000; HUILLET and RAYNAUD, 2001).

This behavior differs sharply from the linear increase of all quantiles of the

distributions of sums of rvs with finite first statistical moment (i.e., for distributions

with a � 1). For larger numbers of summands, quantiles of sums of truncated Pareto

distribution increase linearly.

RODKIN and PISARENKO (2000, their Eqs. (19) and (21)) introduce two particular

values of n:
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Figure 9

Number of earthquakes (shown by circles) with seismic moment larger than or equal to M as a function of

M for the earthquakes in the TOPPOZADA et al. (2000) catalog. Latitude limits 37:0� N – 39:0�N, magnitude

threshold 5.5, the total number of events 81. Solid line - - - approximation by the Pareto distribution,

a ¼ 0:680� 0:076, dashed lines 95% confidence limits (AKI, 1965), conditioned by the total number of

earthquakes observed. These limits only reflect the uncertainty in the estimation of a (not in the number of

observed earthquakes).
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n1 ¼
1� a

a
� ya log 2; ð68Þ

and

n2 ¼
9ð1� aÞ2ya

að2� aÞ : ð69Þ

They argue that if n < n1 the sums behave statistically as if the distribution has

not been truncated, whereas for n > n2 the Gaussian approximation for the sums is

appropriate. For the example displayed in Figure 8, n1 ¼ 350 and n2 ¼ 1152. The

curves in Figure 8 appear to confirm the validity of the conclusions of RODKIN and

PISARENKO (2000) for the lower quantiles.

6. Discussion

We presented five approximations for the quantiles of the distribution of the sums

of Pareto variables. The approximations zð1;2Þq (Eqs. 24, 28) are based on stable

asymptotics for Pareto sums; zð3Þq (Eq. 37) uses replaces the sum Sn with its maximal

summand; zð4Þq (Eqs. 55–56) elaborates the latter idea considering separately the sum

of the largest two observations and the rest of the lower terms to approximate the

median and the upper quantiles; and zð5Þq (Eq. 63) approximates the lower quantiles

by introducing an upper truncation point on the maximum observed value. We

consider the relative error DðkÞq (30) for all our approximations: Table 2 collects the

errors for selected values of a, n, and q.
The accuracy of the estimates given in Table 2 is three digits. This accuracy is

comparable with that of our best approximations and therefore is sufficient for this

study. We notice that Theorem 2 provides the theoretical distribution for the sum

of the two upper order statistics, therefore for n ¼ 2 the values of zð4Þ are

theoretical values of the corresponding quantiles, not approximations. Accordingly,

the errors Dð4Þ for n ¼ 2 shown in Table 2 are statistical fluctuations of empirical

quantiles (in a sample of 107) around their theoretical values. These errors are

small: for a 6¼ 1 they are less than or equal to 0.001. For a ¼ 1 the error increases

to 0.003.

The lower quantile approximation zð5Þq , q� 1, indeed provides a closer approx-

imation than zð1Þq . The former uniformly has a relative error less than 1% for any n,
while the latter starts producing reliable approximations only for n > 50. This is due

to that fact that the normal approximation used in zð5Þq is much better suited for the

small values at the lower tail of the Sn distribution than the stable approximation

used in zð1Þq . For large n (n > 103) the quality of zð1Þq becomes acceptable, as seen in

Figure 4.
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The quality of the median approximation zð1Þ1=2 increases rapidly with n, providing
acceptable results for n � 20. For n < 100 an order of magnitude better approxi-

mation is provided by zð4Þ1=2, whose relative error is less than 1% for a � 1, and less

than 10% for 1=2 � a < 1. As discussed in Section 4.1, the quality of this

approximation is affected by the existence of statistical dependence between the

highest and lower summands within Sn, and as a result its accuracy decreases with

increasing n for a < 1.

The upper quantile approximations are all quite accurate, unlike the case of

medians and lower quantiles where the choice of approximation appears to be

more important. The most rough approximation zð3Þq which simply replaces the

sum Sn with its maximal summand provides less than 5% error for a � 1. Indeed,

for a > 1 its performance deteriorates, since the largest observation no longer

makes an important contribution to the sum Sn. The stable-law approximations

zð1;2Þq demonstrate similar performance for a > 3=2 and a < 2=3, while for

2=3 � a � 3=2, zð1Þq appears to be preferable. The most accurate approximation,

with less than 1% relative error for all the cases considered, is demonstrated by

the approximation zð4Þq . By comparison of zð4Þq with zð3Þq , one observes how

important it is to consider more than just the single largest observation, as well as

the importance of the contribution from the smaller summands, which becomes

crucial for a > 1.

In searching for a best approximation among the five proposed above, we observe

a tradeoff between the quality and simplicity. This is especially prevalent for the

upper quantiles, where the directly calculated approximations zð2;3Þq are clearly

inferior to the more elaborate approximation zð4Þq , which involves solving an integral

equation. For large samples with n � 103 we recommend using zð1Þq . When n is

intermediate to small, n < 103, the upper quantiles can be well approximated by zð2Þq ;

for the lower quantiles zð5Þq appears to perform well. The upper quantile is best

approximated by zð4Þq , which can be replaced in favor of the simpler zð1Þq when a < 1.

Generally, the choice of approximation should be dictated by the range of a, n, and q
considered, as well as consideration of the relative error rate and computational

simplicity desired.

To illustrate the application of our results, Figure 9 shows the distribution of

seismic moment for Californian seismicity, m � 5:5, during the last two centuries. We

use the TOPPOZADA et al. (2000) earthquake catalog and convert its magnitudes into

seismic moments using Eq. (4). Unlike Figure 1, with such a data set one does not

observe fewer earthquakes of large seismic moment than expected according to the

Pareto law. Indeed, the curvature for large M in Figure 9 may even suggest that the

Pareto distribution underestimates the frequency of earthquakes in this seismic

moment range. However, as the 95% confidence limits indicate, this departure from

the Pareto distribution is not statistically significant (see also discussion on the

magnitude accuracy in the catalog below).
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In these illustrative displays we do not try to apply the truncated or tapered

Pareto distribution (as in Eq. (7) or in Section 5) for evaluating the statistical bounds.

As mentioned in Section 1, the proper application of these distributions would

require a significant increase in the scope of our investigations.

Continuing with the application of our results to the TOPPOZADA et al. catalog,

Figure 10 shows the cumulative seismic moment for Californian seismicity, during

the last two centuries. The largest earthquake in the plot is the San Francisco 1906

event (m7:8). Similar displays are often used in geophysics to study accumulation of

seismic moment (PETERSON and SENO, 1984; JAUMÉ and SYKES, 1996; TRIEP and

SYKES, 1997; RODKIN and PISARENKO, 2000; TOPPOZADA et al., 2002). Figure 11

presents the same data and approximations in semi-logarithmic scale with the

number of earthquakes shown at the x-axis.
Using the Pareto distribution with a ¼ 2=3 as a model for the seismic moment

distribution, the observed cumulative moment would be well described by the

statistical bounds for Pareto sums given in columns 3� 5 of Table 2 and shown

(dashed lines) in Figues 10 and 11. For comparison, our approximation by the stable

distribution, zð1Þq (dotted lines), is also displayed. As one can see from Table 2, other

approximations work much better than zð1Þq (especially for the lower quantile and the

median) therefore their respective deviations from the simulated Pareto quantiles in

Figures 10 and 11 would be even smaller.

The observed values of the cumulative seismic moment appears to be well within

the bounds given by both approximations. However, these bounds indicate that

seismic moment release for such data can be estimated only with considerable

uncertainty: the lower 2% bound is an order of magnitude smaller than the median,

whereas the upper 98% bound exceeds the median by nearly a factor 100. Note that

the seismic data particularly prior to 1840 are thought to be of inferior quality, with

significant numbers of events missing and their magnitudes possibly substantially

underestimated; this may explain why the observed cumulative line starts out of the

prescribed statistical bounds.

Although as mentioned in Section 1, the earthquake size distribution should

ideally have an upper bound, here we show statistical limits for the unlimited Pareto

distribution to illustrate the enormous range of these bounds. The corner moment

estimate for California and similar tectonic regions appears to be in

1021 < M < 1021:6 Nm (m 8:0� m 8:5) range (BIRD and KAGAN, 2004), thus we have

only one earthquake in the sample which approaches the upper limit. Hence, the

bounds shown are representative of possible uncertainties in estimating the moment

rate, using naive summation of earthquake moments.

Several methods can be used to improve the estimate of the total seismic

moment release rate. One can increase the size of the available earthquake dataset

and thus include more large earthquakes, either by using older data or by

increasing the spatial size of the region under consideration. Both of these

methods have clear disadvantages: in the former case the additional data may be
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of inferior quality; in the latter case the resolution of the study deteriorates. As

another alternative, one can use tectonic and geodetic data to constrain the

moment release rate (KAGAN, 2002b; BIRD and KAGAN, 2004) by integrating the

seismic moment-frequency relation (7). If the corner or maximum seismic moment

is known or can be estimated (KAGAN and SCHOENBERG, 2001; KAGAN, 2002a), we

can use the methods developed in Section 5 to evaluate the bounds.

Figures 10 and 11 suggest that for seismological applications the quality of

the approximation zð1Þq may be sufficient for an adequate description of the bounds on

the distribution of the total seismic moment release. Indeed, when the quality of the

available data subject to approximation are of such low accuracy and when

the variability of the sum Sn is so extreme, even a relative error in the approximation

as large as 10% – 20% may be acceptable.
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Figure 10

Cumulative seismic moment (solid line) for California as a function of time. Latitude limits 37:0� N –

39:0�N, magnitude threshold 5.5. TOPPOZADA et al. (2000) catalog is used. We display quantiles of

simulated Pareto (a ¼ 2=3) sums with q ¼ 0:02; 0:5; and 0.98 (dashed lower, middle, and upper curves,

respectively). Bounds with q ¼ 0:02; 0:5; and 0.98 obtained using the stable distribution approximation

(zð1Þq , Eq. 24) are shown by dotted curves.
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Figure 11

Logarithmic cumulative seismic moment (solid line) for California as a function of the number of events, n.
Latitude limits 37:0�N – 39:0�N, magnitude threshold 5.5. TOPPOZADA et al. (2000) catalog is used. We

display quantiles of simulated Pareto (a ¼ 2=3) sums with q ¼ 0:02; 0:5; and 0.98 (dashed lower, middle,

and upper curves, respectively). Bounds obtained using the stable distribution approximation (zð1Þq , Eq. 24)

are shown by dotted curves.
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Appendices

A. Asymptotic Formulas for Stable Distributions

In comparing the Pareto sums to the appropriately scaled stable distributions, the

upper and lower tails of these distributions are of special relevance to us. For

maximally-skewed distributions, the lower tail is ‘light’, i.e., its density decays faster

than any power of x (ZOLOTAREV, 1986; SAMORODNITSKY and TAQQU, 1994;

UCHAIKIN and ZOLOTAREV, 1999). On the other hand, the upper tail is governed by a

power-law decay with the exponent a < 2, such tails are called ‘heavy’.

There exist series expansions for stable distributions that are known to converge

relatively quickly in the tails. One may take the leading term F ð0Þa ðxÞ of these series as
an approximation of the distribution at the tails. The form of the leading terms

depends on the index a and on the tail (upper or lower) to be approximated. Below

we present three approximations for the lower quantiles (Eqs. 70–73) and two

approximations for the upper quantiles (Eqs. 74–75).

For a < 1 by integrating the pdf from LINNIK (1954, Eq. 1) or SKOROHOD (1954,

Eq. IV) we obtain

F ð0Þa ðxÞ ¼
1ffiffiffiffiffi
2a
p 1� erf

ffiffiffiffiffiffiffiffiffiffiffi
1� a

a

r
a

cosðpa=2Þ

� � 1
2ð1�aÞ

x
a

2ða�1Þ

" #( )
; x > 0; ð70Þ

where the error function erf ðxÞ is given by

erf ðxÞ ¼ 2ffiffiffi
p
p
Zx

0

expð�t2Þ dt: ð71Þ

For a ¼ 1 integrating the pdf from IBRAGIMOVandLINNIK (1971, Theorem2.4.4) yields

F ð0Þa ðxÞ ¼
1ffiffiffi
2
p 1� erf

ffiffiffi
2

p

r
exp � 1

2
� px

4

� �" #( )
; �1 < x <1 ð72Þ

and for a > 1 integrating the pdf from SKOROHOD (1954, Eq. VI) yields

F ð0Þa ðxÞ ¼
1ffiffiffiffiffi
2a
p 1� erf

ffiffiffiffiffiffiffiffiffiffiffi
a� 1

a

r
�a

cosðpa=2Þ

� � 1
2ð1�aÞ

ð�xÞ
a

2ða�1Þ

" #( )
; �1 < x <1:

ð73Þ

AsUCHAIKIN and ZOLOTAREV (1999, p. 127) note, equation (70) is exact for a ¼ 0:5

(see Eq. 14), and (73) corresponds to the Gaussian distribution Uðx; 0; 2Þ for a ¼ 2:0.

For the upper quantile, x!1, one may use the approximation (SAMORODNIT-

SKY and TAQQU, 1994, Eqs. 1.2.8, 1.2.9)

F ð0Þa ðxÞ ¼ 1� xaCð1� aÞ cosðpa=2Þ½ ��1; ð74Þ
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if a 6¼ 1, and

F ð0Þa ðxÞ ¼ 1� 2

px
; ð75Þ

for a ¼ 1.

In Figure 12a we display an example of approximating the lower quantiles using

Eq. (70). In general, the approximations (Eqs. 70–73) work reasonably well, with

relative errors of just a few percent. For the upper quantiles (Eqs. 74–75) the fit is

good only for certain ranges of a. Figure 12b demonstrates, for instance, that for the

0.98 quantile the expression (74) is within 10% of the theoretical values for a < 0:85

and for 1:21 < a < 1:73, whereas for values of a closer to 2 the fit of the

approximation is only satisfactory for very high quantiles such as 0.999.

B. Normalization Coefficients in Generalized Central Limit Theorem

Here we follow IBRAGIMOV and LINNIK (1971) (referred to below as IL71) to

derive the normalization coefficient Ca in the Generalized Central Limit Theorem.

Although this section is a mere extraction from (IL71); we believe it is worth

presenting the complete derivation here. Since the computational aspects of stable

laws were negligible in the 1960s, IBRAGIMOV and LINNIK (1971) do not give explicit

formulae for Ca. Such formulas appeared in MIJNHEER (1975, see his Eq. 2.2.2 and

2.2.4, p. 17), but were unfortunately misprinted. These misprinted formulas were

borrowed by SAMORODNITSKY and TAQQU (1994, Theorem 1.8.1, p. 50). As a result,

coefficients that are important for all practical purposes appear misprinted in the

most popular references on the subject. The correct formula is given in UCHAIKIN

and ZOLOTAREV (1999) though in an alternative form, thus below (Eqs. 85–87) we

also demonstrate the equivalence of their Table 2.1, p. 62, and our Eq. (20).

Recall (IL71, Theorem 2.2.1, p. 39) that the characteristic function fa of a stable

law Fa with 0 < a < 2 can be represented as

log f ðtÞ ¼ ict þ
Z0

�1

eitu � 1� itu
1þ u2

� �
dMðuÞ

þ
Z1

0

eitu � 1� itu
1þ u2

� �
dNðuÞ; ð76Þ

with

MðuÞ ¼ c1ð�uÞ�a; NðuÞ ¼ �c2ua;

c1 � 0; c2 � 0; c1 þ c2 > 0:
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Theorem 2.2.2 (IL71, p. 43) evaluates explicitly the integrals on the right-hand side of

(76) to show that

log f ðtÞ ¼ ict � cjtja 1� ib
t
jtjwðt; aÞ

� �
; ð77Þ

where a, b, c, c are constants (c � 0, jbj � 1) and

wðt; aÞ ¼ tan pa=2ð Þ; a 6¼ 1;
ð2=pÞ log jtj; a ¼ 1:




In the proof of Theorem 2.2.2 one finds the following (unnumbered) expressions for c
(pages from IL71):

c ¼
�aLðaÞðc1 þ c2Þ cos pa=2ð Þ; 0 < a < 1; p:44
�aMðaÞðc1 þ c2Þ cos pa=2ð Þ; 1 < a < 2; p:45

pðc1 þ c2Þ=2; a ¼ 1; p:45

8<
: ð78Þ

with

LðaÞ ¼
Z1

0

e�u � 1ð Þ du
u1þa

¼ �Cð1� aÞ
a

< 0:

MðaÞ ¼
Z1

0

e�u � 1þ uð Þ du
u1þa

¼ �Cð2� aÞ
aða� 1Þ > 0:

Substituting LðaÞ, MðaÞ into (78) yields

c ¼ Cð1� aÞ c1 þ c2ð Þ cos pa=2ð Þ; a 6¼ 1,
p c1 þ c2ð Þ=2; a ¼ 1.



ð79Þ

If we restrict ourselves to the case c ¼ 1, which can always be achieved by proper

rescaling of variables, then

c1 þ c2 ¼ Cð1� aÞ cos pa=2ð Þ½ ��1; a 6¼ 1,
2=p; a ¼ 1.



ð80Þ

We seek the coefficients Bn such that the normalized sum

X1 þ X2 . . .þ Xn � bn

Bn

Figure 12

Approximations for the tails of stable distributions. (a) Stable cdf (MCCULLOCH and PANTON, 1987) with

a ¼ 0:66 (solid line) and its approximation by Eq. (70) (dashed line). (b) Ratio between theoretical and

approximated values of the upper quantiles 0.98 (dashed) and 0.999 (solid) as functions of the a-index.

b
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of independent random variables Xi with the same distribution function F ðxÞ
converges to a stable distribution SðxÞ with exponent a (0 < a < 2). Theorem 2.6.1

(IL71, p. 76) states that is this case

1� F ðxÞ þ F ð�xÞ ¼ c1 þ c2ð Þ hðxÞ
xa

1þ oð1Þð Þ; ð81Þ

where hðxÞ is a slowly varying function. Furthermore, from Theorems 1.7.3 (IL71, p.

35) and 2.2.1 (IL71, p. 39) (see also Eqs. (2.6.3) and (2.6.4) in IL71) it follows that

n 1� F Bnxð Þ þ F �Bnxð Þ½ � ! c1 þ c2ð Þx�a; ð82Þ

for the appropriate choice of the constants Bn. Combining (81) and (82) one finds

n h Bnxð Þ
Ba

n
! 1: ð83Þ

Condition (83) is the most general condition describing the normalization coefficients

Bn in the GCLT.

In the case of the Pareto distribution we may find an explicit expression for Bn.

Since

1� F ðxÞ þ F ð�xÞ ¼ x�a

then

hðxÞ ¼ c1 þ c2ð Þ�1

and we finally obtain

Ca :¼ Bn

n1=a
¼ c1 þ c2ð Þ�1=a¼ Cð1� aÞ cos pa=2ð Þ½ �1=a; a 6¼ 1,

p=2; a ¼ 1.



ð84Þ

As we mentioned above, UCHAIKIN and ZOLOTAREV (1999, their Table 2.1) give

the formulae for the Bn coefficient in a different form (for a 6¼ 1):

Bn ¼
pn

2CðaÞ sin pa=2ð Þ

� 	1=a
; ð85Þ

The case a ¼ 1 is obtained as a limit of Eq. (85)

lim
a!1

Bn ¼ ðpnÞ=2; ð86Þ

(see the second Eq. 20). The expression (85) can be easily transformed into the first

Eq. (20), using Eq. (6.1.17) in ABRAMOWITZ and STEGUN (1972):

CðaÞCð1� aÞ ¼ p
2 sinðpa=2Þ cosðpa=2Þ : ð87Þ
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C. Proof of (34)

Consider the ratio X1=Mn. Its cdf GðzÞ can be expressed in terms of the

conditional distribution F ðxjyÞ of X1 conditioned on the fixed maximum Mn ¼ y
(PISARENKO, 2003, private communication):

GðzÞ ¼ Prob
X1

Mn
< z


 �
¼
Z1

0

Prob
X1

y
< zjy


 �
dF nðyÞ

¼
Z1

0

Prob X1 < yzjyf gdF nðyÞ

¼
Z1

0

F ðyzjyÞ dF nðyÞ;

and the density gðzÞ is obtained by taking the derivative with respect to z:

gðzÞ ¼
Z1

0

yf ðyzjyÞ dF nðyÞ: ð88Þ

The conditional density f ðxjyÞ corresponding to the distribution F ðxjyÞ is given by

f ðxjyÞ ¼ dðy � xÞ
n

þ 1� 1

n

� �
f ðxÞHðy � xÞ

F ðyÞ : ð89Þ

Here HðxÞ ¼ 1 for x > 0 and 0 for x � 0. The first term on the rhs of (89) corresponds

to the case Mn ¼ X1, whose probability is 1=n by symmetry; the complementary event

X1 < Mn occurs with probability ð1� 1=nÞ. Substituting the pdf (89) into (88) we

obtain

gðzÞ ¼ dðz� 1Þ
n

þ ðn� 1Þ
Z1

0

yf ðyzÞf ðyÞF n�2ðyÞ dy; 0 < z � 1: ð90Þ

This expression can be used to calculate the expectation of the ratio rn ¼ Sn=Mn:
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EðrnÞ ¼ n
Z1

0

zgðzÞdz

¼ 1þ nðn� 1Þ
Z1

0

yf ðyÞF n�2ðyÞ
Z1

0

zf ðyzÞdydz

¼ 1þ nðn� 1Þ
Z1

0

yf ðyÞF n�2ðyÞ F ðyÞ
y
� 1

y2

Zy

0

F ðxÞdx

0
@

1
Ady

¼ 1þ nðn� 1Þ
Z1

0

f ðyÞF n�1ðyÞdy �
Z1

0

T ðyÞf ðyÞF n�2ðyÞdy

0
@

1
A

¼ 1þ ðn� 1Þ
Z1

0

dF nðyÞ

0
@

1
A� n

Z1

0

T ðyÞdF n�1ðyÞ

0
@

1
A

¼ n 1�
Z1

0

T ðyÞdF n�1ðyÞ

0
@

1
A; ð91Þ

where T ðyÞ ¼ 1=y
Ry
0

F ðuÞdu: For the Pareto distribution (2) this becomes

T ðyÞ ¼ 1

y

Zy

1

1� x�að Þdx ¼ 1� 1

1� a
y�a � ay�1
� �

; ð92Þ

and plugging (92) into (91) one obtains

EðrnÞ ¼ E
Sn

Mn

� �
¼

1�nB n;a�1ð Þ
1�a ; a 6¼ 1Pn

k¼1
1
k ; a ¼ 1.

(
ð93Þ

For the truncated Pareto distribution (65) on ½1;Xp� we have (cf. PISARENKO,

1998, Eq.12)

EðrnÞ ¼ n 1� ðn� 1Þ 1� X�a
p

� ��n
B z; 1; 1; n� 1ð Þ½

n

� 1

1� a
B z; 1; 2; n� 1ð Þ þ a

1� a
B z; 1; 1þ 1=a; n� 1ð Þ

	�
; ð94Þ

where z ¼ X�a
p and Bð	; 	; 	; 	Þ is defined by (47).
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D. Existence of Moments for Ordered Statistics

The general distribution of the order statistics Xk;n from a sample with a common

cdf F ðxÞ is given by (NEVZOROV, 2001, Eq. 2.1):

Fn�k;nðxÞ ¼ P Xn�k;n < x
� �

¼
Xn

m¼n�k

Cn
m F ðxÞð Þm 1� F ðxÞð Þn�m: ð95Þ

For the Pareto distribution (2) this gives

Fn�k;nðxÞ ¼ 1� Cn
n�k�1x�ðkþ1Þa þ o x�ðkþ1Þa

� �
; ð96Þ

so the decay rate of the tail

1� Fn�k;nðxÞ
� 

� x�ðkþ1Þa

does not depend on the sample volume n, hence the existence of moments for Xn�k;n is

determined by k only.

In general, the existence of finite moments for order statistics is described by SEN

(1959):

Theorem 3. If E jX jað Þ <1 for some a, then the moment lðrÞk;n ¼ E Xk;n
� �r

exists for all k
such that

r
a
� k � nþ 1� r

a
:

E. Proof of Theorem 2

Denote by Fn�1;n the distribution of the order statistic Xn�1;n and by �F n;nðxjuÞ the
conditional distribution of the upper order statistic Xn;n:

1� �F n;nðxjuÞ ¼ Prob fXn;n > xjXn�1;n ¼ ug: ð97Þ

Let �f n;nðxjuÞ ¼ d
dx

�F n;nðxjuÞ and fn�1;nðxÞ ¼ d
dx Fn�1;nðxÞ. Then

fn�1;nðxÞ ¼
d
dx

nð1� F ðxÞÞF n�1ðxÞ þ F nðxÞ
� 

¼ nðn� 1Þf ðxÞF n�2ðxÞð1� F ðxÞÞ; ð98Þ

�f n;nðxjuÞ ¼
d
dx

1� 1� F ðxÞ
1� F ðuÞ

� 	
¼ f ðxÞ

1� F ðuÞ : ð99Þ

The distribution of Tn�2;n ¼ Xn�1;n þ Xn;n is calculated using theMarkov property (43):
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Prob Xn�1;n þ Xn;n < x
� �

¼
Zx

2

Zz=2

1

fn�1;nðyÞ �f n;nðz� yÞ dydz

¼ nðn� 1Þ
Zx

2

Zz=2

1

f ðyÞf ðz� yÞF n�2ðyÞ dydz: ð100Þ

The internal upper integration limit is z=2 due to the inequality Xn�1;n � Xn;n. For the

Pareto distribution this yields

Prob Xn�1;n þ Xn;n < x
� �

¼ nðn� 1Þa2
Zx

2

Zz=2

1

y�a�1ðz� yÞ�a�1 1� y�að Þn�2 dy dz

¼ nðn� 1Þa2
Xn�2
k¼0
ð�1ÞkCk

n�2

Zx

2

Zz=2

1

y�aðkþ1Þ�1ðz� yÞ�a�1 dy dz:

ð101Þ
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JAUMÉ, S.C. and SYKES, L.R. (1996), Evolution of Moderate Seismicity in the San Francisco Bay region, 1850

to 1993: Seismicity Changes Related to the Occurrence of Large and Great Earthquakes, J. Geophys. Res.

101, 765–89.

KAGAN, Y.Y. (2002a), Seismic Moment Distribution Revisited: I. Statistical Results, Geophys. J. Int. 148,

520–541.

KAGAN, Y.Y. (2002b), Seismic Moment Distribution Revisited: II. Moment Conservation Principle,

Geophys. J. Int. 149, 731–754.

KAGAN, Y.Y. (1997), Earthquake Size Distribution and Earthquake Insurance, Communications in

Statistics: Stochastic Models 13(4), 775–797.

KAGAN, Y.Y. (1994), Observational Evidence for Earthquakes as a Nonlinear Dynamic Process, Physica D

77, 160–192.

KAGAN, Y.Y. and SCHOENBERG, F. (2001), Estimation of the upper cutoff parameter for the tapered Pareto

distribution, J. Appl. Probab. 38A, 158–175.

KANAMORI, H. (1977), The Energy Release in Great Earthquakes, J. Geophys. Res. 82, 2981–2987.

KNOPOFF, L. and KAGAN, Y.Y. (1977), Analysis of the Theory of Extremes as Applied to Earthquake

Problems, J. Geophys. Res. 82, 5647–5657.

KOSTROV, B.V. (1974), Seismic Moment and Energy of Earthquakes, and Seismic Flow of Rock, Izv. Acad.

Sci. USSR, Phys. Solid Earth, January 13–21.

LINNIK, YU. V. (1954), On Stable Probability Laws with Exponent less than One (in Russian), Doklady AN

USSR 94, 619–621.

MANDELBROT, B.B., The Fractal Geometry of Nature (W. H. Freeman, San Francisco, Calif. 1983) 2nd

edition, 468 pp.

McCAFFREY, R. (1997), Statistical Significance of the Seismic Coupling Coefficient, Bull. Seismol. Soc. Am.

87, 1069–1073.

McCULLOCH, J.H. and PANTON, D.B. (1997), Precise Tabulation of the Maximally-skewed Stable

Distributions and Densities, Comput. Statist. Data Anal. 23, 307–320; Erratum, 26, 101. http://

www.econ.ohio-state.edu/jhm/fracden

McCULLOCH, J.H. and PANTON, D.B. Table of the Maximally-skewed Stable Distributions, In (ADLER, R.J.,

FELDMAN, R.E., and TAQQU, M.S. eds.), A Practical Guide to Heavy Tails: Statistical Techniques and

Applications, (Birkhäuser, Boston 1998) pp. 501–507.

MIJNHEER, J.L., Sample Path Properties of Stable Processes, (Math. Centrum, Amsterdam 1975) 124 pp.

MITTNIK, S., RACHEV, S.T., and KIM, J.R. (1998), Chi-square-type Distributions for Heavy-tailed Variates,

Economet. Theor. 14(3), 339–354.

NEVZOROV, V.B., Records: Mathematical Theory (Translations of Mathematical Monographs, v. 194)

(American Mathematical, Society 2001) pp. 164; Russian original 2000.

NEWMAN, W.I., GABRIELOV, A., and TURCOTTE, D.L. eds., Nonlinear Dynamics and Predictability of

Geophysical Phenomena, Geoph. Monogr. 83 (Washington, American Geophysical Union 1994) 107 pp.

NOLAN, J.P. (1997), Numerical Calculation of Stable Densities and Distribution Functions, Communications

in Statistics: Stochastic Models 13, 759–774. http://academic2.american.edu/�jpnolan/stable/quan-
tile.dat

NOLAN, J.P. Stable Distributions – Models for Heavy-Tailed Data (Boston, Birkhäuser 2005) in press.
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