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a b s t r a c t

The Horton and Tokunaga branching laws provide a convenient framework for studying
self-similarity in random trees. The Horton self-similarity is a weaker property that
addresses the principal branching in a tree; it is a counterpart of the power-law size distri-
bution for elements of a branching system. The stronger Tokunaga self-similarity addresses
so-called side branching. The Horton and Tokunaga self-similarity have been empirically
established in numerous observed and modeled systems, and proven for two paradigmatic
models: the critical Galton–Watson branching process with finite progeny and the finite-
tree representation of a regular Brownian excursion. This study establishes the Tokunaga
and Horton self-similarity for a tree representation of a finite symmetric homogeneous
Markov chain. We also extend the concept of Horton and Tokunaga self-similarity to infi-
nite trees and establish self-similarity for an infinite-tree representation of a regular
Brownian motion. We conjecture that fractional Brownian motions are also Tokunaga
and Horton self-similar, with self-similarity parameters depending on the Hurst exponent.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Hierarchical branching organization is ubiquitous in
nature. It is readily seen in river basins, drainage networks,
bronchial passages, botanical trees, and snowflakes, to
mention but a few (e.g., [1–4]). Empirical evidence reveals
a surprising similarity among various natural hierarchies –
many of them are closely approximated by so-called
self-similar trees (SSTs) [1–3,5–16]. An SST preserves its
statistical structure, in a sense to be defined, under the
operation of pruning, i.e., cutting the leaves; this is why the
SSTs are sometimes referred to as fractal trees [2]. A
two-parametric subclass of Tokunaga SSTs, introduced by
Tokunaga [9] in a hydrological context, plays a special role
in theory and applications, as it has been shown to emerge
in unprecedented variety of modeled and natural phenom-
ena. The Tokunaga SSTs with a broad range of parameters
are seen in studies of river networks [1,5,8–10,15,17], vein
structure of botanical leaves [2,3], numerical analyses of
. All rights reserved.
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diffusion limited aggregation [14,18], two dimensional site
percolation [19–22], and nearest-neighbor clustering in
Euclidean spaces [23]. The diversity of these processes and
models hints at the existence of a universal (not problem-
specific) underlying mechanism responsible for the
Tokunaga self-similarity and prompts the question: What
probability models may produce Tokunaga self-similar trees?
An important answer to this question was given by Burd
et al. [5] who studied Galton–Watson branching processes
and have shown that, in this class, the Tokunaga self-
similarity is a characteristic property of a critical binary
branching, that is the discrete-time process that starts with
a single progenitor and whose members equiprobably
either split in two or die at every step. The critical binary
Galton–Watson process is equivalent to the Shreve’s
random river network model, for which the Tokunaga self-
similarity has been known for long time [1,5,8,15]. The
Tokunaga self-similarity has also been rigorously estab-
lished in a general hierarchical coagulation model of Gabrie-
lov et al. [24] introduced in the framework of self-organized
criticality, and in a random self-similar network model of
Veitzer and Gupta [11] developed as an alternative to the
Shreve’s random network model for river networks.
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Prominently, the results of Burd et al. [5] reveal the
Tokunaga self-similarity for any process represented by
the finite Galton–Watson critical binary branching. In the
context of this paper, the most important example is a reg-
ular Brownian motion, whose various connections to the
Galton–Watson processes are well-known (see Pitman
[25] for a modern review). For instance, the topological
structure of the so-called h-excursions of a regular Brown-
ian motion [26] and a Poisson sampling of a Brownian
excursion [27] are equivalent to a finite critical binary
Galton–Watson tree (Section 3 below explains the tree
representation of time series), and hence these processes
are Tokunaga self-similar.

This study further explores Tokunaga self-similarity by
focusing on trees that describe the topological structure
of the level sets of a time series or a real function, so-called
level-set trees. Our set-up is closely related to the classical
Harris correspondence between trees and finite random
walks [28], and its later ramifications that include infinite
trees with edge lengths [5,17,25,29–33]. The main result
of this paper is the Tokunaga and closely related Horton
self-similarity for the level-set trees of finite symmetric
homogeneous Markov chains (SHMCs) – see Section 5,
Theorem 4. Notably, the Tokunaga and Horton self-similar-
ity concepts have been defined so far only for finite trees
(e.g., [5,15,34]). We suggest here a natural extension of
Tokunaga and Horton self-similarity to infinite trees and
establish self-similarity for an infinite-tree representation
of a regular Brownian motion. The suggested approach is
based on the forest of trees attached to the floor line as de-
scribed by Pitman [25]. Finally, we discuss the strong dis-
tributional self-similarity that characterizes Markov
chains with exponential jumps.

The paper is organized as follows. Section 2 introduces
planar rooted trees, trees with edge lengths, Harris paths,
and spaces of random trees with the Galton–Watson distri-
bution. The trees on continuous functions are described in
Section 3. Several types of self-similarity for trees – Horton,
Tokunaga, and distributional self-similarity – are discussed
in Section 4. The main results of the paper are summarized
in Section 5. Section 6 addresses special properties of expo-
nential Markov chains that, in particular, enjoy the strong
distributional self-similarity. Proofs are collected in Sec-
tion 7. Section 8 concludes.
2. Trees

We introduce here planar trees, the corresponding Har-
ris paths, and the space of Galton–Watson trees following
Burd et al. [5], Ossiander et al. [17] and Pitman [25].
Fig. 1. Representation of a tree via a set of finite sequences hi1, . . . , ini: an
example.
2.1. Planar rooted trees

Recall that a graph G ¼ ðV ; EÞ is a collection of vertices
(nodes) V = {vi}, 1 6 i 6 NV and edges (links) E = {ek},
1 6 k 6 NE. In a simple graph each edge is defined as an
unordered pair of distinct vertices: "1 6 k 6 NE, $!1 6 i,
j 6 NV, i – j such that ek = (vi,vj) and we say that the edge
k connects vertices vi and vj. Furthermore, each pair of ver-
tices in a simple graph may have at most one connecting
edge.

A tree is a connected simple graph T = (V,E) without cy-
cles, which readily gives NE = NV � 1. In a rooted tree, one
node is designated as a root; this imposes a natural direc-
tion of edges as well as the parent–child relationship be-
tween the vertices. Specifically, we follow [5] to
represent a labeled (planar) tree T rooted at / by a bijection
between the set of vertices V and set of finite integer-val-
ued sequences hi1, . . . , ini 2 T such that

(i) / = h;i,
(ii) if hi1, . . . , ini 2 T then hi1, . . . , iki 2 T "1 6 k 6 n, and

(iii) if hi1, . . . , ini 2 T then hi1, . . . , in�1, ji 2 T "1 6 j 6 in.

This representation is illustrated in Fig. 1. If
v = hi1, . . . , ini 2 T then u = hi1, . . . , in�1i 2 T is called the parent
of v, and v is a child of u. A leaf is a vertex with no children.
The number of children of a vertex u = hi1, . . . , ini 2 T equals
to c(u) = max{j} over such j that hu, ji � hi1, . . . , in, ji 2 T. A
binary labeled rooted tree is represented by a set of binary
sequences with elements ik = 1, 2, where 1, 2 represent the
left and right planar directions, respectively. Two trees are
called distinct if they are represented by distinct sets of the
vertex-sequences. We complete each tree T by a special
ghost edge � attached to the root /, so each vertex in the
tree has a single parental edge. A natural direction of edges
is from a vertex v to its parent vp.

In these settings, the total number of distinct trees with
n leaves, according to the Cayley’s formula, is nn�2. The to-
tal number of distinct binary trees with n leaves is given by
the (n � 1)th Catalan number [25]

Cn�1 ¼
1
n

2n� 2
n� 1

� �
:

2.2. Trees with edge-lengths and Harris path

A tree with edge-lengths T = (V,E,W) assigns a positive
lengths w(e) to each edge e, W = {w(e)}; such trees are also
called weighted trees (e.g., [5,17]). The sum of all edge
lengths is called the tree length; we write lengthðTÞ ¼P

e wðeÞ. We call the pair (V,E) a combinatorial tree and write
ðV ; EÞ ¼ SHAPEðTÞ, emphasizing that the lengths are disre-
garded in this representation.
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If a tree is represented graphically in a plane, there is a
unique continuous map

rT : ½0; 2lengthðTÞ� ! T

that corresponds to the depth-first search of T, illustrated in
Fig. 2(a). The depth-first search starts at the root of planar
tree with edge-lengths and contours it, moving at a unit
speed, from left to right so that each edge is traveled twice
– its left side in a move away from the root, while its right
side in a move towards the root. The Harris path for a tree
T is a continuous function HTðsÞ : ½0;2lengthðTÞ� ! R that
equals to the distance from the root traveled along the
tree T in the depth-first search. Accordingly, for a tree
T with n leaves, the Harris path HT(s) is a continuous excur-
sion – HT(0) = HT(2LENGTH(T)) = 0 and HT(s) > 0 for any
s2(0,2LENGTH(T)) – that consists of 2n linear segments of
alternating slopes ±1 [25], as illustrated in Fig. 2(b). The clo-
sely related Harris walk Hn(k), 0 6 k 6 2n for a tree with n
vertices is defined as a linearly interpolated discrete excur-
sion with 2n steps that corresponds to the depth-first search
that marks each vertex in a tree [28,25]. Clearly, the Harris
path and Harris walk, as functions ½0;2lengthðTÞ� ! R, have
the same trajectory. A binary tree with n leaves has 2n � 1
vertices; accordingly, its Harris path consists of 2n seg-
ments, and its Harris walk consists of 4n � 2 = 2(2n � 1)
steps.

2.3. Galton–Watson trees

The space T of planar rooted trees with metric

dðs;wÞ ¼ 1
1þ supfn : sjn ¼ wjng ;

where sjn = {hi1, . . . , iki 2 s:k 6 n} form a Polish metric
space, with the countable dense subset T0 of finite trees
[17,5]. An important, and most studied, class of distribu-
tions on T is the Galton–Watson distribution; it corresponds
to the trees generated by the Galton–Watson process with
a single progenitor and the branching distribution {pk}.
Formally, the distribution GWfpkg assign the following
probability to a closed ball Bðs;1=nÞ; s 2 T;n ¼ 1;2; . . .:

P B s;1
n

� �� �
¼

Y
v2sjðn�1Þ

pcðvÞ;

where c(v) is the number of children of vertex v [5,17].
The classical work of Harris [28] notices that the Harris

walk for a Galton–Watson tree with unit edge-lengths, n
Fig. 2. (a) Tree T and its depth-first search illustrated by dashed arrows.
(b) Harris path for the tree T of panel (a).
vertices and geometric offspring distribution is an un-
signed excursion of length 2n of a random walk with inde-
pendent steps ±1. Hence, by the conditional Donsker’s
theorem [25], a properly normalized Harris walk should
weakly converge to a Brownian excursion. Aldous [29–
31], LeGall [32,33], and Ossiander et al. [17] have shown
that the same limiting behavior is seen for a broader class
of Galton–Watson trees, which may have non-trivial edge-
lengths and non-geometric offspring distribution.

Theorem 1 [17, Theorem 3.1]. Let Tn be a Galton–Watson
tree with the total progeny n and offspring distribution L such
that gcd{j:P(L = j) > 0} = 1, E(L) = 1, and 0 < Var(L) = r2 <1,
where gcd{ � } denotes the greatest common divisor. Suppose
that the i.i.d. lengths W = {w(e)} are positive, independent of
Tn, have mean 1 and variance s2 and assume that limx?1
(xlog x)2P(jw(/) � 1j > x) = 0. Then the scaled Harris walk
Hn(k) converges in distribution to a standard Brownian
excursion Bex

t :

fHnð2ntÞ=
ffiffiffi
n
p

;0 6 t 6 1g!d f2r�1 Bex
t ;0 6 t 6 1g;

as n!1:
This paper explores an ‘‘inverse’’ problem – it describes

trees that correspond to a given finite or infinite Harris
walk. We show, in particular, that the class of trees that
correspond to the Harris walks that weakly converge to a
Brownian excursion Bex

t is much broader than the space
of Galton–Watson trees.
3. Trees on continuous functions

Let Xt � X(t) 2 C([L,R]) be a continuous function on a fi-
nite interval [L,R], jLj, jRj <1. This section defines the tree
associated with Xt. We start with a simple situation when
Xt has a finite number of local extrema and continue with
general case.

3.1. Finite number of extrema: level set trees

Suppose that the function Xt 2 C([L,R]) has a finite num-
ber of local extrema. The level set LaðXtÞ is defined as the
pre-image of the function values above a:

LaðXtÞ ¼ ft : Xt P ag:

The level set La for each a is a union of non-overlapping
intervals; we write jLaj for their number. Notice that (i)
jLaj ¼ jLbj as soon as the interval [a,b] does not contain a
value of local minima of Xt, (ii) jLajP jLbj for any a > b,
and (iii) 0 6 jLaj 6 n, where n is the number of the local
maxima of Xt.

The level set tree LEVELðXtÞ describes the topology of the
level sets La as a function of threshold a, as illustrated in
Fig. 3. Namely, there are bijections between (i) the leaves
of LEVELðXtÞ and the local maxima of Xt, (ii) the internal
(parental) vertices of LEVELðXtÞ and the local minima of
Xt (excluding possible local minima at the boundary
points), and (iii) the edges of LEVELðXtÞ and the first posi-
tive excursions of X(t) � X(ti) to right and left of each local
minima ti. The leftmost and rightmost edges h1,1, . . . ,1i
and h2,2, . . . ,2i may correspond to meanders, that is to a



Fig. 3. Function Xt (panel a) with a finite number of local extrema and its
level-set tree LEVELðXÞ (panel b).
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positive segments of X(t) � X(ti), rather than to excursions.
It is readily seen that any function Xt with distinct values of
the local minima corresponds to a binary tree LEVEL(Xt). In
this case, the bijection (iii) can be separated into the bijec-
tions between (iii a) the edges h . . . ,1i of LEVEL(Xt) and the
first positive excursions of X(t) � X(ti) to the left of each lo-
cal minima ti, and (iii b) the edges h . . . ,2i of LEVEL(Xt) and
the first positive excursions of X(t) � X(ti) to the right of
each local minima ti. The edge e = (v,u) that connects the
vertices v and u is assigned the length w(e) equal to the
absolute difference between the values of the respective
local extrema of Xt – according to the bijections (i), (ii)
above.

To complete the above construction, a special care
should be taken of the edge � attached to the tree root. Spe-
cifically, let ti, i = 1, . . . ,n, be the set of internal local minima
of Xt, defined as the set of points such that for any i there
exists such an open interval (ai,bi)3ti that X(ti) 6 X(s) for
any s 2 (ti,bi), X(ti) < X(bi), and X(ti) < X(s) for any s 2 (ai, ti).
The last definition treats only the leftmost point of any
constant-level through as a local minima. The root of the
tree LEVEL(Xt) corresponds to the lowest internal mini-
mum. If the global minimum M of Xt is reached at one of
the boundary points, say at X(L), the root of LEVEL(Xt) has
the parental edge � with the length w(�) = mini(X(ti)) �
X(L). At the same time, if the global minimum M of Xt, is
reached at one of the internal local minima, that is if
M = mini(X(ti)) < min(X(L),X(R)), then jLaj ¼ 0 for any
a < M and jLaj > 1 for any a > M. In other words, the root
of LEVEL(Xt) does not have the parental edge. In this case,
we add the ghost parental edge � with edge length
w(�) = 1. We write LEVEL(Xt,w(�)) to explicitly indicate
the length of the ghost edge that might be added to the le-
vel-set tree and save notation w(�) for the value defined
above uniquely for each function Xt.

By construction, the level set trees are invariant with re-
spect to monotone transformations of time and values of
Xt:

Proposition 1. Let F(�) and G(�) be monotone functions such
that Yt = F(XG(t)) is a continuous function on G�1([L,R]). Then
the function Yt has the same combinatorial level set tree as the
original function Xt, that is

SHAPE LEVELðXt;1Þð Þ ¼ SHAPE LEVELðYt ;1Þð Þ:
The tree with edge lengths LEVELðXt ;1Þ is completely
specified by the set of the local extrema of Xt and its
boundary values, and is independent of the detailed struc-
ture of the intervals of monotonicity. To formalize this
observation, we write EXðsÞ for the linear extreme function
obtained from Xt by (i) linearly interpolating its consecu-
tive local extrema and the two boundary values, and (ii)
changing time within each monotonicity interval as to
have only constant slopes ±1. The function EXðsÞ hence is
a piece-wise linear function with slopes ±1. The length of
the domain of this function equals the total variation of
Xt. We shift this domain to start at s0 = w(�) +
X(L) �mini(X(ti)), where ti are the points of internal local
minima as defined above.
Proposition 2. The level set tree of a function Xt coincides
with that of the linear extreme function EX: LEVEL(Xt,1)=
LEVELðEX ;1Þ.

The particular domain specification of EXðzÞ is explained
by the following statement.

Proposition 3. Let HT(s), s2[0,2LENGTH(T)] be the Harris
path of the level set tree T = LEVELðXt;1Þ, then HTðzÞ ¼ EXðzÞ
on the domain D of EX. The domains of HT(z) and EXðzÞ
coincide, i.e. D = [0,2LENGTH(T)], if and only if Xt is a positive
excursion, and D� [0,2LENGTH(T)] otherwise.

It is known that each piece-wise linear positive excur-
sion (Harris path) that consists of 2n segments with slopes
±1 uniquely specifies a tree T with no vertices of degree 2
(e.g., [25]). Recall that a Harris path corresponds to the
depth-first search that visits each edge in a tree twice;
hence the Harris path HT over-specifies the corresponding
tree T. Similarly, the function EXðsÞ uniquely specifies
(and, probably, over-specifies) the tree LEVELðXt ;1Þ with
no vertices of degree 2. If Xt has distinct values of the local
minima, then EXðsÞ uniquely specifies the binary tree
LEVELðXt ;1Þ.

Our definition of the level-set tree cannot be directly
applied to a continuous function with infinite number of
local extrema, say to a trajectory of a Brownian motion.
This motivates the general set-up briefly reviewed in the
next section; for details see [25,33].

3.2. General case

Let Xt � X(t) 2 C([L,R]) and X[a,b] :¼ inft2[a,b]X(t), for any
a,b 2 [L,R]. We define a pseudo-metric on [L,R] as

dXða; bÞ :¼ XðaÞ � X½a; b�ð Þ þ XðbÞ � X½a; b�ð Þ; a; b 2 ½L;R�:
ð1Þ

We write a �Xb if dX(a,b) = 0. The points on the interval
[L,R] with metric dX form a metric space ([L,R]/�X,dX) [25].

It is easily verified that if Xt is the Harris path for a finite
tree T and rT is the corresponding depth-first search, then
dX(a,b) equals the distance along the tree T between the
points rT(a) and rT(b), as illustrated in Fig. 4. This observa-
tion motivates one to define the tree TREE(X) for a general
continuous function Xt as the above metric space ([L,R]/
�X,dX) [25,33]. The metric-space definition of a tree is a
useful construction, as it allows one to extend the intuition



Fig. 4. Illustration of the pseudo-distance dX(a,b) used to define the tree
treeðXÞ for a continuous function Xt. This example refers to a Harris path
Xt (shown on the right) with a finite number of extrema, so one can
construct a level set tree for Xt. Here, the local maxima X(a) and X(b)
correspond to the leaves ra and rb in the tree shown on the left. The
distance between these points is measured along the shortest path from
ra to rb along the tree (marked by heavy lines), or equivalently, by Eq. (1).

Fig. 5. Example of (a) Horton–Strahler ordering, and of (b) Tokunaga
indexing. Two order-2 branches are depicted by heavy lines in both
panels. The Horton–Strahler orders refer, interchangeably, to the tree
nodes or to their parent links. The Tokunaga indices refer to entire
branches, and not to individual links.
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and formal analysis of finite level set trees, which are only
available for functions with a finite number of local extre-
ma, onto infinite trees of arbitrary continuous functions.
For our work though, an alternative approach of specifying
an infinite tree will be more beneficial; it is discussed in
detail in Section 5 below. This explains the brevity of the
current section, which we include for reference purpose.

Remark. The definition of the level set tree can be readily
applied to a real-valued Morse function f : M! R on a
smooth manifold M. This is convenient for studying
functions in higher-dimensional domains; see, for instance,
Arnold [36] and Edelsbrunner et al. [37]. The Harris-path
and metric-space definitions are not readily applicable to
multidimensional domains.
4. Self-similar trees

This section describes the three basic forms of the tree
self-similarity: (i) Horton laws, (ii) Self-similarity of side-
branching, and (iii) Tokunaga self-similarity. They are
based on the Horton–Strahler and Tokunaga schemes for
ordering vertices in a rooted binary tree. The presented ap-
proach was introduced by Horton [6] for ordering hierar-
chically organized river tributaries; the methods was
later refined by Strahler [7] and further expanded by Toku-
naga [9] to include so-called side-branching.

4.1. Horton–Strahler ordering

The Horton–Strahler (HS) ordering of the vertices of a fi-
nite rooted labeled binary tree is performed in a hierarchi-
cal fashion, from leaves to the root [2,5–7]: (i) each leaf has
order r(leaf) = 1; (ii) when both children, c1, c2, of a parent
vertex p have the same order r, the vertex p is assigned or-
der r(p) = r + 1; (iii) when two children of vertex p have dif-
ferent orders, the vertex p is assigned the higher order of
the two. Fig. 5(a) illustrates this definition. Formally,

rðpÞ ¼
rðc1Þ þ 1 if rðc1Þ ¼ rðc2Þ;
max rðc1Þ; rðc2Þð Þ if rðc1Þ – rðc2Þ:

�
ð2Þ

A branch is defined as a union of connected vertices with
the same order. The branch vertex nearest to the root is
called the initial vertex, the vertex farthest from the root
is called the terminal vertex. The order X(T) of a finite tree
T is the order r(/) of its root, or, equivalently, the maximal
order of its branches (or nodes). The magnitude mi of a
branch i is the number of the leaves descendant from its
initial vertex. Let Nr denote the total number of branches
of order r and Mr the average magnitude of branches of or-
der r in a finite tree T.

An equivalent, and intuitively more appealing, defini-
tion of the Horton–Strahler orders is done via the operation
of pruning [5,15]. The pruning of an empty tree results in
an empty tree, Rð/Þ ¼ /. The pruning RðTÞ of a non-empty
tree T, not necessarily binary, cuts the leaves and possible
chains of degree-2 vertices connected to the leaves. A ver-
tex of degree 2 (or a single-child vertex) v is defined by the
conditions hv,1i 2 T, hv,2i R T. Each chain of degree-2 verti-
ces connected to a leaf is uniquely identified by a vertex v
such that hv,ui 2 T implies u = h1, . . . ,1i. The pruning oper-
ation is illustrated in Fig. 6.

The first application of pruning to a binary tree T simply
cuts the leaves, possibly producing some single-child verti-
ces. Some of those vertices are connected to the leaves via
other single-child vertices and thus will be cut at the next
pruning, while the other occur deeper within the pruned
tree and will wait for their turn to be removed. It is readily
seen that repetitive application of pruning to any tree will
result in the empty tree /. The minimal X such that
RðXÞðTÞ ¼ / is called the order of the tree. A vertex v of tree
T has the order r if it has been removed at the rth applica-
tion of pruning: v 2 RðkÞðTÞ81 6 k < r; v R RðrÞðTÞ. We say
that a binary tree T is complete if any of the following
equivalent statements hold: (i) each branch of T consists
of a single vertex; (ii) orders of siblings (vertices with the
common parent) are equal; (iii) the parent vertex’s rank
is a unit higher than that of each of its children. There ex-
ists only one complete binary tree on n = 2k leaves for each
k = 0,1, . . . ; all other trees are called incomplete.
4.2. Tokunaga indexing

The Tokunaga indexing [2,9,15] extends upon the Hor-
ton–Strahler orders; it is illustrated in Fig. 5b. This index-



Fig. 6. Example of consecutive application of the pruning operation Rð�Þ to the tree T. In this example the tree has order X = 3 so Rð3ÞðTÞ ¼ /. For visual
convenience the pruned branches are shown in all panels by a light color. Notice that pruning may produce chains of single-child nodes.
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ing focuses on incomplete trees by cataloging side-branch-
ing, which is the merging between branches of different or-
der. Let sk

ij; 1 6 k 6 Nj; 1 6 i < j 6 X denotes the number
of branches of order i that join the non-terminal vertices
of the kth branch of order j. Then Nij ¼

P
k sk

ij; j > i is the
total number of such branches in a tree T. The Tokunaga in-
dex Tij is the average number of branches of order i < j per
branch of order j in a finite tree of order X P j:

Tij ¼
Nij

Nj
: ð3Þ

In a probabilistic set-up, one considers a space of finite bin-
ary trees with some probability measure. Then, Ni; sk

ij; Nij,
and Tij become random variables. We notice that if, for a gi-
ven {ij}, the side-branch counts sk

ij are independent identi-
cally distributed random variables, sk

ij¼
d sij, then, by the law

of large numbers,

Tij!
a:s

EðsijÞ as Nj!
a:s1;

where the almost sure convergence Xr!
a:s:l is understood as

P(limr?1Xr = l) = 1.
For consistency, we denote the total number of order-i

branches that merge with other order-i branches by Nii

and notice that in a binary tree Nii = 2Ni+1. This allows us
to formally introduce the additional Tokunaga indices:
Tii = Nii/Ni+1 � 2. The set {Tij}, 1 6 i 6X � 1,1 6 j 6X, i 6 j
of Tokunaga indices provides a complete statistical
description of the branching structure of a finite tree of or-
der X.

Next, we define several types of tree self-similarity
based on the Horton–Strahler and Tokunaga indexing
schemes.

4.3. Horton laws

The Horton laws, widely observed in hydrological and
biological networks [3,6,11,12], state, in their ultimate
form,

Nr

Nrþ1
¼ RB;

Mrþ1

Mr
¼ RM; RB;RM > 0; r P 1;

where Nr, Mr is, respectively, the total number and average
mass of branches of order r in a finite tree of order X.
McConnell and Gupta [34] emphasized the approximate,
asymptotic nature of the above empirical statements. In
the present set-up, it will be natural to formulate the Hor-
ton laws as the almost sure convergence of the ratios of the
branch statistics as the tree order increases:
Nr

Nrþ1
!a:s: RB > 0; for r P 1; as X!1; ð4Þ

Mrþ1

Mr
!a:s: RM > 0; as r;X!1: ð5Þ

Notice that the convergence in (4) is seen for the small-or-
der branches, while the convergence in (5) – for large-or-
der branches. We call (4),(5) the weak Horton laws. We
also consider strong Horton laws that assume an almost
sure exponential dependence of the branch characteristics
on r in a tree of finite order X and magnitude N:

Nr �a:s: N0 N R�r
B ; for r P 1; as X!1; ð6Þ

Mr �a:s: M0 Rr
M; as r;X!1 ð7Þ

for some positive constants N0, M0, RB and RM and with
xr �a:s: yr staying for

P lim
r!1

xr=yr ¼ 1
� �

¼ 1:

Clearly, the strong Horton laws imply the weak Horton
laws. The inverse in general is not true; this can be illus-
trated by a sequence Mr ¼ Rr

M rC , for any C > 0, for which
the weak Horton law (5) holds, while the strong law (7)
fails. We notice also that X ?1 implies N ?1, but not
vice versa; an example is given by a comb – a tree of order
X = 2 with an arbitrary number of side branches with
Tokunaga index {12}. This is why the limits above are ta-
ken with respect to X, not N.

The strong Horton laws imply, in particular, that

Nr �a:s: const M�a
r ; a ¼ log RB

log RM
ð8Þ

for appropriately chosen r ?1 and X ?1, for instance
r ¼

ffiffiffiffi
X
p

. The relationship (8) is the simplest indication of
self-similarity, as it connects the number Nr and the size
Mr of branches via a power law. However, a more restric-
tive property is conventionally required to call a tree
self-similar; it is discussed in the next section.

4.4. Tokunaga self-similarity

In a deterministic setting, we call a tree T of order X a
self-similar tree (SST) if its side-branching structure (i) is
the same for all branches of a given order:

sk
ij ¼: sij; 1 6 k 6 Nj; 1 6 i < j 6 X;

and (ii) is invariant with respect to the branch order:

siðiþkÞ � TiðiþkÞ ¼: Tk for 2 6 iþ k 6 X: ð9Þ
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A Tokunaga self-similar tree (TSST) obeys an additional con-
straint first considered by Tokunaga [9]:

Tkþ1=Tk ¼ c () Tk ¼ ack�1 a; c > 0;1 6 k 6 X� 1:

ð10Þ

In a random setting, we say that a tree T of order X is self-

similar if E sj
iðiþkÞ

� �
¼: Tk for 1 6 j 6 Ni+k, 2 6 i + k 6X; and

it is Tokunaga self-similar if, furthermore, the condition
(10) holds.

In a deterministic setting, for a tree satisfying the weak
Horton and Tokunaga laws,1 one has [9,15]:

RB ¼
2þ c þ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ c þ aÞ2 � 8c

q
2

: ð11Þ

Peckham [15] has noticed that in a Tokunaga tree of order
X one has Nr = MX�r+1, which implies that the Horton laws
for masses Mr follow from the Horton laws for the counts
Nr and RM = RB. McConnell and Gupta [34] have shown that
the weak Horton laws with RB = RM hold in a self-similar
Tokunaga tree. Zaliapin [35] has shown, moreover, that
strong Horton laws hold in a Tokunaga tree and, at the
same time, even weak Horton laws may not hold in a gen-
eral, non-Tokunaga, self-similar tree.

The Tokunaga self-similarity describes a two-paramet-
ric class of trees, specified by the Tokunaga parameters
(a,c). Our goal is to demonstrate that the Tokunaga class
is not only structurally simple but is also sufficiently wide.
This study establishes the Tokunaga self-similarity for the
level-set trees of symmetric homogeneous Markov chains,
and, as a direct consequence, for the trees of their scaling
limits including a regular Brownian motion.

4.5. Stochastic self-similarity

Burd et al. [5] define stochastic self-similarity for a ran-
dom tree s 2 ðT0; PÞ as the distributional invariance with
respect to the pruning RðsÞ:

P �js – /ð Þ �R�1 ¼ Pð�Þ

and prove the following result that explains the impor-
tance of Tokunaga self-similarity within the class of Gal-
ton–Watson trees as well as the special role of the
Galton–Watson critical binary trees.

Theorem 2 [5, Theorems 1.1, 1.2, 3.17]. Let
s 2 T0;GWfpkg

� 	
with bounded offspring number. Then the

following statements are equivalent:

(i) Tree s is stochastically self-similar.
(ii) E(siðiþkÞ) ¼: Tk, i.e., the expectation is a function of k and

Tk is defined by this equation.
(iii) Tree s has the critical binary offspring distribution,

p0 = p2 = 1/2.

These authors show, furthermore, how the arbitrary
binary Galton–Watson distribution is transformed under
the operation of pruning.
1 In a deterministic setting, the convergence in the Horton laws is
understood as the convergence of sequences.
Theorem 3 [5, Proposition 2.1]. Let s be a finite tree with a
binary Galton–Watson distribution, p0 + p2 = 1, with p2 6 1/
2. Let snþ1 ¼ RðsnÞ; n P 0; s0 ¼ s. Then sn+1 has the binary
Galton–Watson distribution pðnþ1Þ

0 þ pðnþ1Þ
2 ¼ 1 with

pðnþ1Þ
2 ¼

pðnÞ2

h i2

pðnÞ0

h i2
þ pðnÞ2

h i2 :

We demonstrate below that stochastic (or distribu-
tional) self-similarity, within the class of tree representa-
tions of homogeneous Markov chains, holds only for
Markov chains with symmetric exponential increments.

5. Main results

Let Xk; k 2 Z be a real valued Markov chain with homo-
geneous transition kernel K(x,y) � K(x � y), for any x; y 2 R.
We call Xk a homogeneous Markov chain (HMC). When
working with trees, Xk will also denote a function from
CðRÞ obtained by linear interpolation of the values of the
original time series Xk; this creates no ambiguities in the
present context.

A HMC is called symmetric (SHMC) if its transition ker-
nel satisfies K(x) = K(�x) for any x 2 R. We call an HMC
exponential (EHMC) if its kernel is a mixture of exponential
jumps. Namely,

KðxÞ ¼ p/ku
ðxÞ þ ð1� pÞ/kd

ð�xÞ; 0 6 p 6 1; ku; kd > 0;

where /k is the exponential density

/kðxÞ ¼
ke�kx; x P 0;
0; x < 0:

�
ð12Þ

We will refer to an EHMC by its parameter triplet {p,ku,kd}.
The concept of tree self-similarity is based on the notion

of branch order and is tightly connected to the pruning oper-
ation (Section 4.1, Fig. 6). In terms of time series (or real
functions with finite number of local extrema), pruning cor-
responds to coarsening the time series resolution by remov-
ing the local maxima, as shown in Fig. 7. An iterative pruning
corresponds to iterative transition to the local minima. We
formulate this observation in the following proposition.

Proposition 4. The transition from a time series Xk to the
time series Xð1Þk of its local minima corresponds to the pruning
of the level-set tree LEVEL(X). Formally,

LEVEL XðmÞ
� �

¼ Rm LEVELðXÞð Þ; 8m P 1;

where X(m) is obtained from X by iteratively taking local min-
ima m times (i.e., local minima of local minima and so on).

The next result establishes invariance of several classes
of Markov chains with respect to the pruning operation.

Lemma 1. (a) The local minima of a HMC form a HMC. (b)
The local minima of a SHMC form a SHMC. (c) The local
minima of an EHMC with parameters {p,ku,kd} form a EHMC
with parameters fp	; k	u; k	dg, where

p	 ¼ pkd

pkd þ ð1� pÞku
; k	d ¼ pkd;

and k	u ¼ ð1� pÞku: ð13Þ



Fig. 7. Time series Xk (light line) and the series Xð1Þk of linearly connected
local minima (black line and dots).
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Let fMtg � Mð1Þ
t

n o
; t 2 T 1 � R, be the set of local min-

ima of Xt, not including the boundary minima;

Mð2Þ
t

n o
; t 2 T 2 � R, be the set of local minima of local min-

ima (local minima of second order), etc., with

MðjÞ
t

n o
; t 2 T j � R being the local minima of order j. We

call a segment between two consecutive points from
T r; r P 1, a (complete) basin of order r. For each r, there
might exist a single leftmost and a single rightmost seg-
ments of Xt that do not belong to any basin or order r, with
a possibility for them to merge if Xt does not have basins of
order r at all. We call those segments incomplete basins of
order r. There is a bijection between basins (complete and
incomplete) of order r in Xt and branches of Horton–Strah-
ler order r in LEVELðXtÞ. This explains the terms complete
branch and incomplete branch of order r.
Fig. 8. Illustration of tree construction for an infinite time series. The time
series Xt (shown on the left) is divided here into two vertically shifted
excursions, marked A and B in the time axis, and one fall, depicted by the
heavy segment on the time axis. The descending ladder LX consists of two
isolated points and one interval (heavy points and segment on the time
axis). The excursions correspond to the two trees represented by marked
triangles on the right, the interval from the descending ladder corre-
sponds to the line that connects the trees A and B.
Theorem 4 (Horton and Tokunaga self-similarity). The com-
binatorial level set tree SHAPE (LEVEL(X),1) of a finite SHMC
Xk, k = 1, . . . ,N satisfies the strong Horton laws for any r P 1,
asymptotically in N:

Nr �a:s:N R�r
B ; RB ¼ 4; as N !1: ð14Þ

Furthermore, T=SHAPE(LEVEL(X,1)) is a Tokunaga self-simi-
lar tree with parameters (a,c) = (1,2). Specifically, for a finite
tree T of order X(N) the side-branch counts sj

iðiþkÞ with
2 6 i + k 6X for different complete branches j of order
(i + k) are independent identically distributed random vari-
ables such that sj

iðiþkÞ ¼:
d siðiþkÞ and

E siðiþkÞ

 �

¼: Tk ¼ 2k�1: ð15Þ

Moreover, X!a:s:1 as N ?1 and, for any i,k P 1, we have

TiðiþkÞ !
a:s:

Tk ¼ 2k�1; as N !1;

where TiðiþkÞ can be computed over the entire Xk.
Next we extend this result to the case of infinite time

series and the weak limits of finite time series. For a line-
arly interpolated time series Xt, t P 0 (equivalently, for a
continuous function with a countable number of separated
local extrema) consider the descending ladder
LX = {t:Xt = X[0, t]}, which in our setting is a set of isolated
points and non-overlapping intervals (Fig. 8). The function
Xt is naturally divided into a series of vertically shifted po-
sitive excursions on the intervals not included in LX and
monotone falls on the intervals from LX. Any (in the a.s.
sense) infinite SHMC can be decomposed into infinite
number of such finite excursions and finite falls. We will
index the excursions by index i P 1 from left to right.
The extreme time series EðXi
kÞ for each finite excursion Xi

t

is a Harris path for a finite tree LEVELðXi
tÞ. Hence, each such

finite excursion completely specifies a single subtree of
TREEðXtÞ. In particular, it completely specifies the HS or-
ders for all vertices and Tokunaga indices for all branches
except the one containing the root within LEVELðXi

tÞ. We
also notice that each fall of Xt on an interval from LX corre-
sponds to an individual edge of TREEðXtÞ. Combining the
above observations, we conclude that the tree TREEðXtÞ
can be represented as infinite number of subtrees
LEVELðXi

tÞ connected by edges that correspond to the falls
of Xt on the descending ladder, see Fig. 8. Pitman calls this
construction, applied to the standard Brownian motion
rather than time series, a forest of trees attached to the floor
line [25, Section 7.4]. Let Nn

r and Nn
ij denote, respectively,

the number of branches of order r and the number of side
branches of Tokunaga index {ij} in the first n excursions of
Xt as described above. We introduce the cumulative
quantities

gn
r :¼ Nn

r

Nn
rþ1

; Tn
ij :¼

Nn
ij

Nn
j

and define, for the infinite time series Xt,

grðXtÞ ¼ lim
n!1

gn
r ; TijðXtÞ ¼ lim

n!1
Tn

ij; ð16Þ

whenever the above limits exist in an appropriate probabi-
listic sense.

By Proposition 1, the level set tree of a finite excursion
Xk

t is not affected by monotonic transformations of time
and value. This allows to expand the above definition
(16) to the weak limits of time series via the the Donsker’s
theorem. In particular, if Xt is a SHMC whose increments
have standard deviation r, then the rescaled segments Xt

weakly converge to the regular Brownian motion Bt,
0 6 t 6 1. Namely,

XðntÞ=
ffiffiffi
n
p
!d rBt

as n ?1 through the end point of the finite excursions
that comprise Xt. This leads to the following result.
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Corollary 1. The combinatorial tree SHAPE(TREEðBtÞ) of a
regular Brownian motion Bt, t 2 [0,1] satisfies the Horton and
Tokunaga self-similarity laws. Namely,

grðBtÞ ¼ 4 for r P 1 and TiðiþkÞðBtÞ

¼ 2k�1 for i; k P 1; ð17Þ

where the limits (16) are understood in the almost sure sense.
We conclude this section with a conjecture motivated

by the above result as well as extensive numeric simula-
tions [23].

Conjecture 1. The tree SHAPE tree BH
� �� �

of a fractional

Brownian motion BH
t ; t 2 ½0;1� with the Hurst index 0 < H < 1

is Tokunaga self-similar with TiðiþkÞ(B
H) = Tk = ck�1, c = 2H + 1,

i,k P 1. According to (11), this corresponds to the Horton self-
similarity with

grðB
HÞ ¼ 2þ H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ 2

q
; r P 1: ð18Þ

The sense of limits (16) is to be determined.
6. Exponential chains

This section focuses on exponential chains, which enjoy
an important distributional self-similarity and whose le-
vel-set trees have the Galton–Watson distribution.

6.1. Distributional self-similarity

Consider a SHMC Xk; k 2 Z with kernel

KðxÞ ¼ f ðxÞ þ f ð�xÞ
2

;

where f(x) is a probability density function with support
Rþ. The series of local minima of Xk (or, equivalently, prun-
ing Xð1Þk of Xk) also forms a SHMC with transition kernel
K1(x) (see Lemma 1(b)). It is natural to look for chains
invariant with respect to the pruning:

Xk¼
d c Xð1Þk ; c > 0: ð19Þ

By Proposition 1, such invariance would guarantee the dis-
tributional Tokunaga self-similarity:

sj
iðiþkÞ ¼:

d siðiþkÞ ¼ Tk; 1 6 j 6 Niþk; 1 6 iþ k 6 X; ð20Þ

where Tk is a random number of side-branches of order i
that join an arbitrarily chosen branch of order (i + k).
Hence, we seek the conditions on f(x) to ensure that
K1(x) = c�1K(x/c) for some constant c > 0.

Proposition 5. The local minima of a SHMC Xk with kernel
K(x) form a SHMC with kernel

K1ðxÞ ¼
Kðx=cÞ

c
; c > 0

if and only if c = 2 and

R f̂ ð2sÞ
h i

¼ f̂ ðsÞ
2� f̂ ðsÞ

�����
�����
2

; ð21Þ
where f̂ ðsÞ is the characteristic function of f(x) and R½z� stands
for the real part of z 2 C.

Observe that the set of densities f(x) that satisfy (21) is
not empty. A solution is given for example by the Laplace
density with k > 0, e.g. for f(x) = /k(x) with exponential den-
sity /k(x) of (12), that is by an EHMC {1/2,k,k}.

6.2. Distributional self-similarity for symmetric exponential
chains

Lemma 1(c) allows one to study the behavior of the
EHMCs formed by local minima, minima of minima, and
so on of an EHMC Xk with parameters {p,ku,kd}. Introducing
the variables

A ¼ 1� p
p

; c ¼ kd

ku
ð22Þ

one readily obtains that their counterparts {A⁄,c⁄} for the
chain of local minima, given by (13), are expressed as

A	 ¼ A
c
; c	 ¼ c

A
: ð23Þ

Notably, this means that the chain of local minima for any
EHMC form an EHMC with Ac = 1. The only fixed point in
the space (A,c) with iteration rules (23) is the point
(A = 1,c = 1), which corresponds to the distributionally
self-similar EHMS discussed in Section 6.1. This point is
an image (under the pruning operation) of the EHMCs with
A = c or pkd = (1 � p)ku. The last condition is equivalent to
E(Xk � Xk�1) = 0 for any k > 1. The chain of local minima
for any EHMC with A > c (A < c) corresponds to a point on
the upper (lower) part of the hyperbola Ac = 1. Any point
on this hyperbola, except the fixed point (1,1), moves away
from the fixed point toward (0,1) or (1,0). This is illus-
trated in Fig. 9. It follows that the Tokunaga and even
weaker Horton self-similarity is only seen for a symmetric
EHMC. The above discussion can be summarized in the fol-
lowing statement.

Theorem 5. Let Xk be an EHMC {p,ku,kd}. Then Xk satisfies
the distributional self-similarity (19) if and only if p = 1/2,
ku = kd. Furthermore, the multiple pruning XðmÞk ; m > 1 of Xk

satisfies the distributional self-similarity (19) if and only if the
chain’s increments have zero mean, or, equivalently, if and
only if pkd = (1 � p)ku. In this case, the self-similarity is
achieved after the first pruning, that is for the chain Xð1Þk of
local minima.
Corollary 2. The regular Brownian motion with drift is not
Tokunaga self-similar.
6.3. Connection to Galton–Watson trees

An important, and well known, fact is that the Galton–
Watson distribution (see Section 2.3) is the characteristic
property of trees that have Harris paths with alternating
exponential steps. We formulate this result using the ter-
minology of our paper.



Fig. 9. Characterization of EHMCs in the space (A,c) of (22) with iteration
rules (23) that correspond to the transition to the EHMC of local maxima.
Each EHMC corresponds to a point on the plane (A,c). The chain of local
minima for any EHMC corresponds to a point on the hyperbola Ac = 1. The
point (A = 1,c = 1) is fixed. Any point from the lower branch (A > 1,c < 1)
moves along the hyperbola toward (1,0). Any point from the upper
branch (A < 1,c > 1) moves along the hyperbola toward (0,1). Arrows
illustrate the point dynamics.
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Theorem 6 ([25, Lemma 7.3], [32,26]). Let Xk be a discrete-
time excursion with finite number of local minima. The level
set tree SHAPE(LEVELðXk;1Þ) is a binary Galton–Watson tree
with p0 + p2 = 1 if and only if the rises and falls of Xk,
excluding the last fall, are distributed as independent expo-
nential variables with parameters (l + k) and (l � k), respec-
tively, for 0 6 k < l. In this case,

p0 ¼
lþ k

2l
; p2 ¼

l� k
2l

:

We now use this result to relate sequential pruning of
Galton–Watson trees (see Theorem 3) and pruning of
EHMCs. Consider the first positive excursion Xk of an EHMC
with parameters {p(0) = p = 1 � q,ku,kd}. The geometric sta-
bility of the exponential distribution implies that the
monotone rises and falls of Xk are exponentially distributed
with parameters qku and pkd, respectively. The Theorem 6
implies that SHAPE(LEVELðXkÞ) is distributed as a binary
Galton–Watson tree, p0 + p2 = 1, with

p2 � pð0Þ2 ¼
pkd

qku þ pkd
: ð24Þ

The first pruning Xð1Þk of Xk, according to (13), is the EHMC
with parameters

pð1Þ ¼ pkd

qku þ pkd
; qku; pkd

� 
:

Its upward and downward monotone increments are expo-
nentially distributed with parameters, respectively,

ðqkuÞ2

qku þ pkd
and

ðpkdÞ2

qku þ pkd
:

By Theorem 6, the level-set tree for an arbitrary positive
excursion of Xð1Þk is a binary Galton–Watson tree,
pð1Þ0 þ pð1Þ2 ¼ 1, with

pð1Þ2 ¼
ðpkdÞ2

ðqkuÞ2 þ ðpkdÞ2
:

Continuing this way, we find that nth pruning XðnÞk of
Xk � Xð0Þk is an EHMCs such that the level set tree of its arbi-
trary positive excursion have a binary Galton–Watson dis-
tribution, pðnÞ0 þ pðnÞ2 ¼ 1, with

pðnÞ2 ¼
ðpkdÞ2

n

ðqkuÞ2
n

þ ðpkdÞ2
n :

This can be rewritten in recursive form as

pðnÞ2 ¼
pðn�1Þ

2

h i2

pðn�1Þ
0

h i2
þ pðn�1Þ

2

h i2 ; n P 1

with pð0Þ2 given by (24). Notably, this is the same recursive
system as that discovered by Burd et al. [5, Proposition 2.1]
(see Theorem 3 above) in their analysis of consecutive
pruning for the Galton–Watson trees. Another noteworthy
relation is given by

pðnÞ ¼ pðn�1Þ
2 ; n P 1; pð0Þ ¼ p; pð0Þ2 ¼ p2;

which connects the ‘‘horizontal’’ probability p(n) of an up-
ward jump in a pruned time series XðnÞk with the ‘‘vertical’’
probability pðn�1Þ

2 of branching in a Galton–Watson tree.

7. Terminology and proofs

7.1. Level-set trees: definitions and terminology

This section introduces terminology for discussing the
hierarchical structure of the local extrema of a finite time
series Xk and relating it to the level set tree LEVEL(X). For
consistency we repeat some terms introduced above to for-
mulate Theorem 4.

Let fMtg � Mð1Þ
t

n o
; t 2 T 1 � R, be the set of local min-

ima of Xt, not including possible boundary minima;

Mð2Þ
t

n o
; t 2 T 2 � R, be the set of local minima of local min-

ima (local minima of second order), etc., with

MðjÞ
t

n o
; t 2 T j � R being the local minima of order j. Next,

let fmsg � mð1Þs

n o
; s 2 S1 � R, be the set of local maxima

of Xk, including possible boundary maxima, and

mðjþ1Þ
s

n o
; s 2 Sjþ1 � R the set of local maxima of MðjÞ

t

n o
for all j P 1. We will call a segment between two consecu-
tive points from T j a (complete) basin of order j. Clearly,
T 1 
 T 2 
 � � � and each basin of order r is comprised of a
non-zero number of basins of arbitrary order k < r. For each
r, there might exist a single leftmost and a single rightmost
segments of Xt that do not belong to any basin or order r,
with a possibility for them to merge if Xt does not have ba-
sins of order r at all. We call those segments incomplete ba-
sins of order r.

By construction, each basin of order j contains exactly
one point from Sj; e.g., there is a single local maximum
from S1 between two consecutive local minima from T 1,
etc. There exists a bijection between basins (complete
and incomplete) of order r in Xt and branches of Horton–
Strahler order r in LEVELðXtÞ; this explains the terms
complete branch and incomplete branch of order r. More
specifically, there is a bijection between the terminal
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vertices of order-r branches – i.e., vertices parental to two
branches of order (r � 1) – and the local maxima from Sj

within the respective basins.
Let us fix an arbitrary local minimum Xk of order rk;

then k 2 T j for 1 6 j 6 rk and k R T j for j > rk. For each
j > rk there exists a unique basin of order j that contains
k; we denote the boundaries of this basin by

lðjÞk ; r
ðjÞ
k 2 T ðjÞ; lðjÞk < rðjÞk . Denote by cðjÞk the unique point from

Sj within the interval lðjÞk ; r
ðjÞ
k

� �
. Multiple points Xk may cor-

respond to the same triplet lðjÞk ; c
ðjÞ
k ; r

ðjÞ
k

� �
, which will create

no confusion. These definitions are illustrated in Fig. 10.
Consider now a point k of local minimum such that

k R [jP1mðjÞs . If lðjÞk < k < cðjÞk for a given j > rk then we call
the point lðjÞk the local minimum of order j adjacent to k
and the point rðjÞk the local minimum of order j opposite to
k. The analogous terminology is introduced in case
cðjÞk < k < rðjÞk . By construction, Xk is always greater than
the value of its adjacent minimum of any order j > rk. The
value of the opposite minimum of order j is denoted by
MðjÞ

k . We have, for each k,

Mð1Þ
k P Mð2Þ

k P Mð3Þ
k P � � � ð25Þ

We already noticed that the local maxima mð1Þt correspond
to the tree leaves, that is to its branches of Horton order
r = 1. The set mðjþ1Þ

t for each j P 1 corresponds to the verti-
ces parental to two branches of the same HS order j; they
are the terminal vertices of order-(j + 1) branches. All other
local minima of Xk correspond to vertices parental to two
vertices of different SH order; we will refer to this as
side-branching. Specifically, a local minimum Xk of order i
forms a side-branch of order {ij} if

Mðj�1Þ
k P Xk P MðjÞ

k ; ð26Þ

where the first inequality disappears when j = i + 1. Fig. 11
illustrates this for a basin of second order. In general, each
basin of order r contains a uniquely specified positive
excursion attached to its higher end. The local maxima of
order k < r from this excursion correspond to the side-
branches with Tokunaga index {km} with m 6 r. The local
maxima of order k < r within the basin but outside of this
Fig. 10. Basin of order 2: an illustration. The figure shows a basin of order 2 that
paper; it shows the local maximum mð2Þk of the basin’s local minima, the opposite
corresponding points lð2Þk ; cð2Þk , and rð2Þk .
excursion correspond to the side-branches with Tokunaga
index {km} with m > r.
7.2. Proofs

Proof of Propositions 1, 2, 3 and 4: The statements
readily follow from the definition of level set trees. h

Proof of Lemma 1
cons
and a
(a) Follows from the independence of increments in Xk.
(b) Let {Mj} be the sequence of local minima of Xk and
dj = Mj+1 �Mj. We have, for each j
ists of
djacen
dj ¼
Xnþ
i¼1

Yi �
Xn�
i¼1

Zi; ð27Þ
where n+ and n� are independent geometric random vari-
ables with parameter 1/2:
Pðnþ ¼ kÞ ¼ Pðn� ¼ kÞ ¼ 2�k; k ¼ 1;2; . . . ;
Yi, Zi are independent identically distributed (i.i.d.) random
variables with density f(x). Here the first sum corresponds
to n+ positive increments of Xk between a local minimum
Mj and the subsequent local maximum mj and the second
sum to n� negative increments between the local maxi-
mum mj and the subsequent local minimum Mj+1. It is
readily seen that both the sums in (27) have the same dis-
tribution, and hence their difference has a symmetric dis-
tribution. We notice that the symmetric kernel for the
sequence of local minima {Mj} is necessarily different from
K(x).

(c) Consider an EHMC Xk with parameters {p,ku,kd}. By

statement (a) of this lemma, the local minima of Xk form
a HMC with transition kernel K1(x). The latter is the
probability distribution of the jumps dj given by (27) with
n+, n� being geometric random variables with parameters p
and (1 � p) respectively, Yi¼

d
/ku

, and Zi¼
d

/kd
. For the char-

acteristic function of K1 one readily has
5 local minima. The figure illustrates the taxonomy used in the
t minima of second order for a local minimum Xk, as well as the



Fig. 11. Tokunaga indexing: an illustration. The figure shows the Tokunaga indexing for the local minima of the second order basin shown in Fig. 10. The
values of i, j,k > 2 are determined by the large-scale structure of the function Xt.
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cK1ðsÞ ¼
pð1� pÞkdku

ð1� pÞku � isð Þðpkd þ isÞ
¼ p	 �d/k	u

ðsÞ þ ð1� p	Þ �d/k	d
ð�sÞ
with
p	 ¼
pkd

pkd þ ð1� pÞku
; k	d ¼ pkd; and k	u

¼ ð1� pÞku:
Thus
K1ðxÞ ¼ p	/k	u
ðxÞ þ ð1� p	Þ/k	d

ð�xÞ:
This means that the HMC of local minima also jumps
according to a two-sided exponential law, only with differ-
ent parameters p	; k	d and k	u. h

Proof of Theorem 4: Horton self-similarity
We notice that the number Nr of order-r branches in LE-

VEL(X) equals the number jSrj of local maxima mðrÞs of order
r (with the convention that the local maxima of order 0 are
the values of Xk). The probability for a given point of Xk to
be a local maximum equals the probability that this point
is higher than both its neighbors. The Markov property and
symmetry of the chain imply that this probability is 1/4.
Hence the average number of local maxima is

E jS0jð Þ ¼ EðN1Þ ¼
XN�1

i¼2

PðXi�1 < Xi > Xiþ1Þ ¼
N � 2

4
� N

4
:

Let li denote the event (Xi is a local maximum). By Markov
property, the events li, lj are independent for ji � jjP 2;
hence, the variance V(N1) / N. This yields

lim
N!1

E
N1

N

� �
¼ 1=4; lim

N!1
V

N1

N

� �
¼ 0:

One can combine the strong laws of large numbers for (i)
the proportion of the upward increments of Xt (that con-
verges to 1/2) and (ii) the proportion of upward increments
followed by a downward increment (that converges to 1/2)
to obtain N1=N!a:s: 1=4, and, in particular, N1!

a:s:1 as N ?1.
We use now Lemma 1(b) to find, applying the same

argument to the pruned time series, that Nr=Nr�1!
a:s:

1=4
as N ?1 for any r > 1. Finally,

Nr

N
¼ Nr

Nr�1

Nr�1

Nr�2
. . .

N1

N
!a:s: 4�r; N !1;
which completes the proof of the strong Horton law
(14). h

The proof of the Tokunaga self-similarity will require
several auxiliary statements formulated below.

Lemma 2. A basin of order j contains on average 4j�k basins
of order k, for any j > k P 1.
Proof of Lemma 2: We show first that a basin of order
(j + 1) contains on average 4 local minima of order j P 1.
The number n of points of Xk within a first-order basin
(i.e., between two consecutive local minima) is
n = 1 + n+ + n�, where n+, n� are, respectively, the numbers
of basin points (excluding the basin boundaries) to the left
and right of its local maximum m; and the latter is counted
separately in the expression above. The independence of
increments of Xk implies

Pðnþ ¼ kÞ ¼ Pðn� ¼ kÞ ¼ 2�k�1; k ¼ 0;1; . . . ;

and hence

E½n� ¼ 1þ E½nþ� þ E½n�� ¼ 1þ 1þ 1 ¼ 3: ð28Þ

By Lemma 1(b), the same result holds for the average num-
ber of local minima of order j within an order-(j + 1) basin,
for any j P 1. Thus, the average number of order-j basins
within an order-(j + 1) basin is E[n] + 1 = 4.

The independence of increments of Xk implies that the
number of order-(j � 1) subbasins within an order-j basin
is independent of the numbers of order-j basins within
an order-(j + 1) basin. This leads to the Lemma’s
statement. h

Lemma 3. Let a and b be two points chosen at random and
without replacement from the set {1,2, . . . ,N} and
g = (g1,g2,g3) denotes the random number of points within
the following intervals respectively: (i) [1,min (a,b)), (ii) (min
(a,b), max (a,b)), and (iii) (max (a,b),N]. Then the triplet g
has an exchangeable distribution.
Proof of Lemma 3: We notice that the triplet g can be
equivalently constructed by choosing three points (a,b,c)
at random from (N + 1) points on a circle and counting
the number of points within each of the three resulting
segments. This implies exchangeability. h
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Lemma 4. Let Yi 2 R; i ¼ 1;2; . . . be i.i.d. random variables,
a pair ðn;mÞ 2 N2 has an exchangeable distribution indepen-
dent of Yi, and

X ¼
Xn

i¼1

Yi �
Xnþm

i¼nþ1

Yi: ð29Þ

Then X has a symmetric distribution.
Proof of Lemma 4: Let D = n �m and F(XjD) denote the

conditional distribution of X given D. From the definition of
X it follows that

FðX jD ¼ kÞ ¼ Fð�X jD ¼ �kÞ:
Exchangeability of (n,m) implies symmetry of D and we
thus obtain

FðXÞ ¼
X1

k¼�1
FðX jD ¼ kÞPðD ¼ kÞ

¼
X1
k¼0

FðX jD ¼ kÞ þ FðX jD ¼ �kÞ½ �PðD ¼ kÞ

¼
X1
k¼0

FðX jD ¼ kÞ þ Fð�X jD ¼ kÞ½ �PðD ¼ kÞ:

The sums of conditional distributions in brackets are sym-
metric, which completes the proof. h

Proof of Theorem 4: Tokunaga self-similarity
We will show that limN?1Tij = 2j�i�1 for any pair j > i. By

Lemma 1(b), Tij = T(i+k)(j+k) and so it suffices to prove the
statement for i = 1, that is to show that limN?1T1j = 2j�2

for any j P 2. This will be done by induction. Below we
use the terminology introduced in Section 7.1.

Induction base, j = 2. Consider a basin of order 2, formed
by two consecutive points from T 2 (local minima of second
order). We denote here their positions by L and R, L < R.
This part of the proof will consider only local minima from
this interval; they will be referred to as ‘‘points’’.

The highest local minimum, or point c ¼ cð2Þk 2 S2 forms
a vertex parental to two branches of order 1 with Tokunaga
indices {11}; in addition, a random number of local minima
corresponds to internal vertices parental to side-branches
with Tokunaga indices {1j}, j > 1. The number NðL;RÞ12 of
vertices of index {12} within (L,R) equals the number of
side-branch points Xk that are higher than their opposite
minimum of second order:

NðL;RÞ12 ¼ # L < k < R : Xk > Mð2Þ
k

n o
:

For each side-branch vertex Xk we necessarily have Xk < Xc

since Xc is maximal among the local minima. Recall that
the local minima form a SHMC. Hence, for a randomly cho-
sen side-branch Xk we have

Xc � Xk ¼
Xn0
i¼1

Yi;

where n0 is a geometric rv such that P(n0 = k) = 2�k, and
Yi > 0 are i.i.d. random variables that correspond to the
jumps between the local minima. Clearly, the difference

Xc �Mð2Þ
k has the same distribution. The random variables

Xc �Mð2Þ
k

� �
and (Xc � Xk) are independent and so

P Xk > Mð2Þ
k

� �
¼ 1=2. The expected number of side-

branches with index {12} within the interval (L,R) is
E NðL;RÞ12

h i
¼ E

Xn�1

k¼1

1ð0;1Þ Xk �Mð2Þ
k

� �" #
: ð30Þ

The summation above is taken over (n � 1) side-branch
points within (L,R); and the random variables n was de-
scribed in Lemma 2.

We show next that the random variables

1ð0;1Þ Xk �Mð2Þ
k

� �
are independent of n. Suppose that there

exist n = N points within (L,R). A particular placement of k
and c among these points is obtained by choosing two
points at random and without replacement from {1, . . . ,N}.
By Lemma 3, the conditional distribution of the numbers
of points between k and c and between c and the local min-
imum opposite to Xk have an exchangeable distribution.

Lemma 4 implies that P Xk > Mð2Þ
k jn ¼

�
NÞ ¼ 1=2. Thus,

E NðL;RÞ12

h i
¼ E½n� 1�P Xk > Mð2Þ

k

� �
¼ 2� 1=2 ¼ 1: ð31Þ

The numbers NðL;RÞ12 are independent for different basins of
order 2 by Markov property of Xt. The strong law of large
numbers yields

T12 ¼
N12

N2
!a:s: 1 ¼ 20 as N !1:

Induction step. Suppose that the statement is proven for
j P 2, that is we know that for a randomly chosen local
minima Xk

P Xk > MðjÞ
k

� �
¼ 2�ðj�1Þ

and T1j!
a:s:

2j�2 as N ?1. We will prove it now for (j + 1).
Consider a randomly chosen side-branch point Xk of order

{1i}, i > j. By (26), Xk < MðmÞ
k for 1 6m 6 j and thus neces-

sarily Xk < cðiþ1Þ
k ; 1 6 i 6 j, since cðiþ1Þ

k is a local maximum
of order-i minima within the basin (L,R) of order (j + 1) that
contains k. Repeating the argument of the induction base

we find that Xk �MðiÞ
k has a symmetric distribution for all

i 6 j + 1 and that the probability of Xk > MðiÞ
k

� �
is indepen-

dent of the number of local maxima of order j within the
basin (L,R). This gives, for a randomly chosen Xk,

P Xk > Mðjþ1Þ
k

� �
¼ P Xk > Mðjþ1Þ

k ;Xk > MðjÞ
k

� �
¼ P Xk > Mðjþ1Þ

k Xk > MðjÞ
���� �

P Xk > MðjÞ
k

� �
¼ 2�1 � 2�ðj�1Þ ¼ 2�j:

By Lemma 2, the average number of order-2 basins within
a basin of order (j + 1) is 4j�1. Each such basin contains on
average 2 points that correspond to side branches with
Tokunaga index {1�}. Hence, the average total number of
side-branches with index {1�} within a basin of order
(j + 1) is 2 � 4j�1 = 22j�1. Applying the Wald’s lemma to

the sum of indicators 1ð0;1Þ Xk �Mðjþ1Þ
k

� �
over the random

number of local minima of order j within the basin (L,R),
we find the average total number of side-branches of order
{1(j + 1)}:

E NðL;RÞ1ðjþ1Þ

h i
¼ 2�j � 22j�1 ¼ 2j�1:
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The strong law of large numbers yields

T1ðjþ1Þ ¼
N1ðjþ1Þ

Nðjþ1Þ
!a:s: 2j�1; as N !1: �

Proof of Proposition 5: Each transition step between the
local minima of Xk can be represented as dj of (27) where
{Yi} and {Zi} are independent random variables with density
f(x), and n+ and n� are two independent geometric random
variables with parameter 1/2. The Wald’s lemma readily
implies that c = 2. This gives for the characteristic functions

bK 1ðsÞ ¼ 2 bK ð2sÞ ¼ R f̂ ð2sÞ
h i

:

On the other hand, taking the characteristic function of dj

we obtain

bK 1ðsÞ ¼
f̂ ðsÞ

2� f̂ ðsÞ

�����
�����

2

;

which completes the proof. h

Proof of Theorem 5: The Tokunaga and Horton self-
similarity for a symmetric EHMC was proven in Theorem 4.
Here we show the violation of the Horton self-similarity for
an asymmetric EHMC.

Let XðmÞk denote the time series obtained by m-time
repetitive pruning of time series Xk. Recall that there is
one-to-one correspondence between the local maxima of
X(m) and the branches of order m in the level set tree LE-
VEL(X) (see Section 7.1). Hence, the Horton self-similarity
is equivalent to the invariance of the proportion of local
maxima with respect to pruning. The proportion of local
maxima in X(m) equals the probability PðmÞmin for a randomly
chosen point to be a local maxima. The Markov property
of X(m) – Lemma 1(c) – implies that PðmÞmin ¼ pðmÞ 1� pðmÞ

� 	
,

where p(m) is the probability for an upward jump in X(m).
For an asymmetric EHMC let A(m) be the mth iteration of

A, as in (22), (23). There, for m P 1, either A(m) < 1 in which
case A(m) ? 0 or A(m) > 1 in which case A(m) ?1, all as
m ?1 (see Section 6.2, Eq. (23) and Fig. 9). This corre-
sponds to p(m) = 1/(A(m) + 1) ? 1 or p(m) ? 0, respectively,

and leads to PðmÞmin ! 0. This prohibits the Horton, and hence
Tokunaga, self-similarity. h

8. Discussion

This work establishes the Tokunaga and Horton self-
similarity for the level-set tree of a finite symmetric homo-
geneous Markov process with discrete time and continu-
ous state space (Section 5, Theorem 4). We also suggest a
definition of self-similarity for an infinite tree, using the
construction of a forest of subtrees attached to the floor
line [25]; this allows us to establish the Tokunaga and Hor-
ton self-similarity for a regular Brownian motion (Section 5,
Corollary 1). This particular extension to infinite trees
seems natural for tree representation of time series, where
concatenation of individual finite time series corresponds
to the ‘‘horizontal’’ growth of the corresponding tree. Alter-
native definitions might be better suited though for other
situations related, say, to the ‘‘vertical’’ growth of a tree
from the leaves, like in a branching process.
A useful observation is the equivalence of smoothing
the time series by removing its local maxima and pruning
the corresponding level-set tree (Section 5, Proposition 4).
It allows one to switch naturally between the tree and
time-series domains in studying various self-similarity
properties.

As discussed in the introduction, the Tokunaga self-sim-
ilarity for various finite-tree representations of a Brownian
motion follow from (i) the results of Burd et al. [5] on the
Tokunaga self-similarity for the critical binary Galton–
Watson process and (ii) equivalence of a particular tree
representation to this process. We suggest here an alterna-
tive, direct approach to establishing Tokunaga self-similar-
ity in Markov processes. Not only this approach does not
refer to the Galton–Watson property, it extends the Toku-
naga self-similarity to a much broader class of trees. In-
deed, as shown by Le Gall [32] and Neveu and Pitman
[26] (see Theorem 6), the tree representation of any non-
exponential symmetric Markov chain is not Galton–Wat-
son; it is still Tokunaga, however, by our Theorem 4.

Peckham and Gupta [16] have introduced the generalized
Horton laws, which state the equality in distributions for
the rescaled versions of suitable branch statistics
Sr : Sr ¼d Rr�k

S Sk; RS > 0. These authors established the exis-
tence of the generalized Horton laws in the Shreve’s random
model, that is for the Galton–Watson trees. Accordingly, one
would expect the generalized Horton laws to hold for the
exponential symmetric Markov chains. Veitzer and Gupta
[11] and Troutman [38] have studied the random self-similar
network (RSN) model introduced in order to explain the var-
iability of the limiting branching ratios in the empirical Hor-
ton laws. They have demonstrated that the generalized
Horton laws hold for various branch statistics, including
the average magnitudes Mr, in this model. Furthermore, they
established the weak Horton laws (4), (5) and Tokunaga self-
similarity for the RSN model. Notably, the RSN model does
not belong to the class of Galton–Watson trees, yet it demon-
strates the Tokunaga self-similarity, similarly to the non-
exponential symmetric Markov chains considered here.

Tree representation of stochastic processes [25,26,29–
33] and real functions [36,37] is an intriguing topic that at-
tracts attention of mathematicians and natural scientists. A
structurally simple yet flexible Tokunaga self-similarity,
which extends beyond the classical Galton–Watson space,
may provide a useful insight into the structure of existing
data sets and models as well as suggest novel ways of mod-
eling various natural phenomena. For instance, the level
set tree representation have been used recently in analysis
of the statistical properties of fragment coverage in gen-
ome sequencing experiments [39–41]. It seems that some
of the methods and results obtained in the present work
might prove useful for the gene studies. In particular, it
looks intriguing to test the self-similarity of the gene-re-
lated trees and interpret it in the biological context.

Notably, the results of this paper, as well as that of Burd
et al. [5], refer only to a single point (a,c) = (1,2) in the two-
dimensional space of Tokunaga parameters. The empirical
and numerical studies, however, report a broad range of
these parameters, roughly 1 < a < 2 and 1 < c < 4. This moti-
vates a search for more general Tokunaga models; a poten-
tial broad family is suggested by our Conjecture 1.
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The construction of the level set tree is a particular case
of the coagulation process; in the real function context it
describes the hierarchical structure of the embedded
excursions of increasing lengths and heights. Coagulation
theory – a well-established field with broad range of prac-
tical applications to physics, biology, and social sciences
[42,43,4] – is heavily based on the concepts of symmetry
and exchangeability [25,42]. We find it noteworthy that
the only property used to establish the results in this paper
is symmetry of a Markov chain. It seems worthwhile to ex-
plore the concept of Tokunaga self-similarity for a general
coalescent process.
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