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Supplemental Material

Clustering is a fundamental feature of earthquakes that impacts basic and applied
analyses of seismicity. Events included in the existing short-duration instrumental cata-
logs are concentrated strongly within a very small fraction of the space–time volume,
which is highly amplified by activity associated with the largest recorded events. The
earthquakes that are included in instrumental catalogs are unlikely to be fully repre-
sentative of the long-term behavior of regional seismicity. We illustrate this and other
aspects of space–time earthquake clustering, and propose a quantitative clustering
measure based on the receiver operating characteristic diagram. The proposed
approach allows eliminating effects of marginal space and time inhomogeneities
related to the geometry of the fault network and regionwide changes in earthquake
rates, and quantifying coupled space–time variations that include aftershocks, swarms,
and other forms of clusters. The proposed measure is used to quantify and compare
earthquake clustering in southern California, western United States, central and eastern
United States, Alaska, Japan, and epidemic-type aftershock sequence model results. All
examined cases show a high degree of coupled space–time clustering, with the mar-
ginal space clustering dominating the marginal time clustering. Declustering earth-
quake catalogs can help clarify long-term aspects of regional seismicity and increase
the signal-to-noise ratio of effects that are subtler than the strong clustering signatures.
We illustrate how the high coupled space–time clustering can be decreased or removed
using a data-adaptive parsimonious nearest-neighbor declustering approach, and
emphasize basic unresolved issues on the proper outcome and quality metrics of declus-
tering. At present, declustering remains an exploratory tool, rather than a rigorous opti-
mization problem, and selecting an appropriate declustering method should depend on
the data and problem at hand.

Introduction
Earthquake clustering is a fundamental aspect of seismicity. It
is manifested most clearly by concentration of seismicity
around tectonic plate boundaries and large faults (spatial
clustering; see Figs. 1a and 2a) and after large earthquakes
(aftershocks; see Figs. 1b and 2b), and is also associated with
foreshocks, swarms, and other types of linked events (e.g.,
Jones and Molnar, 1979; Kagan and Jackson, 1991; Press and
Allen, 1995; Utsu, 2002; Ben-Zion, 2008; Mignan, 2014;
Zaliapin and Ben-Zion, 2016; Ross and Cochran, 2021).
Earthquake clustering reflects various forms of triggering
mechanisms, including static and dynamic stress transfers
from previous earthquakes, fluid migration, and aseismic slip
below and along faults (e.g., Dieterich, 1994; Console et al.,
2006; Felzer and Brodsky, 2006; Lengliné et al., 2012; Ross et al.,
2017; Kato and Ben-Zion, 2021). On one hand, clustering of
seismicity is important for many purposes such as identifying
the character and interaction of active fault structures (e.g.,

Ruhl et al., 2016), estimating time-dependent distribution of
earthquakes (e.g., Ogata, 1999; Field et al., 2017), and more.
On the other hand, efforts to clarify less obvious aspects of
earthquake dynamics benefit from using declustered catalogs
that do not include aftershocks, foreshocks, and other strong
forms of clustering. Examples include detection of tidal, sea-
sonal, hydrologic, climatic, and anthropogenic triggering of
seismicity (e.g., Cochran et al., 2004; Amos et al., 2014;
Goebel and Brodsky, 2018; Hammond et al., 2019; Johnson
et al., 2019; Hsu et al., 2021). For some applications, it is also
important to consider the “background” earthquake activity,
generated within a given volume by the long-term regional
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tectonic processes, separated from the chains of triggered seis-
micity that typically follow the background events. Examples
include development of long-term seismic hazard maps (e.g.,
Petersen et al., 2015, 2018), inversions of focal mechanisms for
the background stress field operating on the volume under
consideration (e.g., Martínez-Garzón et al., 2016; Abolfathian
et al., 2019), and estimations of evolving localization of
seismicity before large earthquakes (e.g., Ben-Zion and
Zaliapin, 2020).

The duration of instrumental earthquake catalogs is very
short (typically only a few tens of years) relative to the duration
of large earthquake cycles. Accordingly, the available catalogs
are often dominated by aftershocks of the largest earthquakes
that happened to occur during the observational period. The
instrumental catalogs may also be influenced by aftershocks of
nonrecorded historical events and aftershocks of events outside
of the examined spatial region (Wang, Jackson, and Zhuang,
2010; van der Elst, 2017). As a result, the recorded activity is
not necessarily representative of what might occur in the fol-
lowing 20 yr (or even 5 yr). The strong clustering of seismicity
masks other properties and reduces the ability to understand
other phenomena and the long-term large-scale dynamics of
earthquakes for which local triggering effects are averaged out.

A high degree of earthquake clustering is commonly
obscured (quite deceivingly) by a strong space–time concentra-
tion that is not easily discernible in a visual catalog inspection.
Several key clustering phenomena are described by power laws
that apply to earthquake size (e.g., frequency-moment statistics
related to the Gutenberg–Richter law), time (e.g., Omori law),
and location (e.g., decay of seismic rate with distance from the
fault core); see Ben-Zion (2008, table 2) for details and further
examples. The intermediate portions of these power laws are
well established observationally, but the tails associated with

small-scale (left tails) and large-scale (right tails) features
remain underexplored. Most relevant for the present article
are the left tails and the fact that the majority of events in
the available catalogs occur within a tiny fraction of the total
examined space–time volume in the immediate vicinity of
other events, in accordance with the Omori–Utsu power-law
temporal decay of aftershock sequences (Utsu and Ogata,
1995) and the power-law decay of seismic intensity off the fault
core (Felzer and Brodsky, 2006; Dieterich and Smith, 2009;
Powers and Jordan, 2010; Goebel et al., 2014). Although these
laws are well known, the severity of their consequences for
earthquake clustering is rarely quantified, and the effects of
such clustering remain underappreciated. In the following sec-
tions, we illustrate and quantify earthquake clustering with
examples of seismicity from southern California and other
regions. We propose a simple and robust measure of space–
time clustering (G) that allows disentangling effects related
to concentration of events around a heterogeneous fault net-
work from additional coupled space–time fluctuations. We
show that the observed catalogs are dominated by the marginal

Figure 1. Spatiotemporal clustering of earthquakes in southern
California based on the catalog of Hauksson et al. (2012,
extended) for the period 1981–2020. (a) Map view of earth-
quakes withM ≥ 2 (gray). Shades of red color reflect the number
of events (logarithmic scale; see color bar) in each square spatial
cell with the side length equal to 0.25° latitude. Black lines show
major faults. The most active cell at 116.4° W, 33.7° N with 3822
events covers the aftershock sequence of 1992 M 7.3 Landers
earthquake. (b) Event counts in 1 yr time intervals. The largest
counts correspond to the most numerous aftershock sequences
(marked in the figure). (Inset) The location of the examined
region (blue rectangle). The color version of this figure is available
only in the electronic edition.
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space inhomogeneities that mask signals expressed by coupled
space–time fluctuations of earthquake rates. These coupled
fluctuations include aftershocks, foreshocks, swarms, and
multiple other types of clusters that one might want to detect
for future examination or removal from the catalog. We dis-
cuss some approaches to detecting and removing the coupled
space–time inhomogeneities, along with the goals and metrics
of catalog declustering.

Clustering of Earthquakes
Basic observations
We begin by illustrating earthquake clustering in southern
California, using the high-quality relocated catalog of

Hauksson et al. (2012, extended
to later years) for earthquakes
with magnitudes M ≥ 2 during
1981–2020 (Fig. 1). The catalog
lists 89,341 such events within
119.5°–115.5° W and 32.8°–
36.5° N, and it features an
unprecedented combination of
spatial coverage, completeness
magnitude, and event location
quality. The average absolute
horizontal location error for
the examined events is 275 m;
the completeness magnitude is
between 2 and 3, and may
slightly vary in time and space
(Hauksson et al., 2012).
Counting events within 7605
spatiotemporal voxels that have
a square spatial projection with
a side length equal to 0.25° lat-
itude and duration of 1 yr
shows that 38% (2857) of the
voxels are empty. The marginal
space and time projections of
these voxels, with the corre-
sponding event counts, are
shown in Figure 1a,b, respec-
tively. The voxel event count
has a heavy-tailed distribution
(e.g., Kagan and Jackson,
2000) with a highly uneven
voxel population. Although
the average number of events
in the nonempty voxels is 18,
the maximal count is 2733,
which is 145 times the mean.
In other words, about 3%
(2733) of the entire catalog is
contained within a single voxel,

which is only about 0.02% of the examined nonempty space–
time volume. This maximal voxel count corresponds to after-
shocks of 1992 M 7.3 Landers earthquake.

Similar clustering is seen in other regions and with other
magnitude thresholds, so the clustering effect in the southern
California catalog is not due to possible catalog artifacts such
as completeness issues and event location errors. As a comple-
mentary example, we consider 7066 global earthquakes with
M ≥ 5.8 and depth z < 70 km during 1976–2017 from the
International Seismological Centre–Global Earthquake Model
(ISC-GEM) v.8 Global Instrumental Earthquake Catalogue
(Storchak et al., 2013, 2015; Di Giacomo et al., 2018). This selec-
tion has been reported to be complete in several independent

Figure 2. Spatiotemporal clustering of global seismicity based on the International Seismological
Centre–Global Earthquake Model (ISC-GEM) v.8 catalog during the period 1976–2017. (a) The
number of earthquakes withM ≥ 5.8 in square spatial cell with latitude side of 5° (color). Black lines
show plate boundaries. (b) Event counts in four-month time intervals. Some of the spikes cor-
respond to aftershocks of large earthquakes indicated in the figure; the higher number of events
following theM 9.1 Tohoku earthquake relative to the largerM 9.3 Sumatra earthquake illustrates
the lack of true universality in earthquake behavior. The color version of this figure is available only
in the electronic edition.
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studies (e.g., Michael, 2014; Di Giacomo et al., 2015). The global
seismicity occupies a small fraction of the available space,
concentrating around the main plate boundaries (Fig. 2a). If
we tile the Earth surface by 2592 square spatial cells with latitude
size of 5° (Fig. 2a), only 508 (20%) cells contain at least one
earthquake and 2084 (80%) cells remain empty. The earthquake
distribution is also strongly nonuniform in time (Fig. 2b) mainly
because of aftershocks sequences of large earthquakes (e.g.,
the 2011 M 9.1 Tohoku). The space and time inhomogeneities
combine and amplify when one considers the joint space–time
distribution of earthquakes. For instance, if we partition the
space–time volume of the examined global catalog into
20,736 voxels with a square space projection of 5° latitude
and 5 yr duration, 18,866 (90%) voxels remain empty.

The number of events in the
remaining 1870 (10%) non-
empty voxels varies between 1
and 130, with a mean of 3.78.
The largest count of 130 corre-
sponds to a voxel around the
epicenter of the great 2011
M 9.1 Tohoku earthquake.
This single voxel contains 2%
of the recorded global seismicity,
while representing only 0.005%
of the examined space–time.

Figure 3 offers another visual
illustration of the strong clus-
tering of earthquakes in
southern California. Figure 3a
shows the time–latitude projec-
tion of all 8140 events withM ≥
3 in the catalog. Figure 3b
only includes the 50% (4083)
least clustered events based on
the nearest-neighbor earth-
quake proximity discussed in
Zaliapin and Ben-Zion (2020)
and illustrated later. Despite
this substantial culling, the pan-
els are barely distinguishable
visually. They show the same
relative intensity of earthquakes
at different latitudes, the same
temporal fluctuations, and the
same major groups of events.
The figure illustrates that at
least half of the catalog is in
the form of extremely dense
clusters not easily discernible
by eye. The majority of earth-
quakes occur within the imme-
diate spatiotemporal vicinity of

other events and do not evenly sample the active seismogenic
volume.

Figure 3b suggests that a proper declustering of this data set
should remove >50% of events, because it still shows visible
clusters associated with the 1992 M 7.3 Landers, 1999 M 7.1
Hector Mine, and 2019 M 7.1 Ridgecrest. Figure 3c presents
a declustered version of the catalog using the method of
Zaliapin and Ben-Zion (2020). The declustered catalog consists
of the 19% (1535) least clustered events. The declustering
eliminates the prominent clusters illustrated in Figure 3a,b,
while preserving the relative rates of events in different regions.
This declustering approach is based on the separation of scales
in the nearest-neighbor earthquake proximity (Baiesi and
Paczuski, 2004; Zaliapin et al., 2008; Zaliapin and Ben-Zion,

Figure 3. Clustering of seismicity in southern California. Time–latitude projection of earthquakes
with magnitudeM ≥ 3 in the catalog of Hauksson et al. (2012, extended) during 1981–2020. The
largest earthquakes (1992 M 7.3 Landers, 1999 M 7.1 Hector Mine, and 2019 M 7.1
Ridgecrest) are marked by red circles. (a) The full catalog with 8140 events. (b) The 50% (4083)
least clustered events. (c) A declustered catalog based on the method of Zaliapin and Ben-Zion
(2020) with 19% (1535) least clustered events. The visual similarity of (a,b) shows that 50% of the
catalog occurs in dense clusters. The color version of this figure is available only in the electronic
edition.
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2013, 2016). The proximity from any earthquake to an earlier
event is defined as a product of the interevent time Δt and
surface distance r raised to the fractal dimension d of the
events, η � Δtrd . The distribution of the nearest-neighbor
proximity is prominently bimodal in various observed and
model catalogs; see Zaliapin and Ben-Zion (2020) for referen-
ces to specific studies.

Figure 4 shows the bimodal distribution of the nearest-neigh-
bor proximity in the examined catalog of southern California
with magnitudes M ≥ 3 during 1981–2020. Figure 4a and 4b
shows the scalar proximity and the joint distribution of its time
component T � Δt and space component R � rd that are
defined so that η � RT , respectively. Here, we use d = 1.6;
although the bimodal nature of the proximity is independent
of the parameter selection (Zaliapin and Ben-Zion, 2013).
The two modes are separated by several orders on the proximity
scale (Fig. 4a), emphasizing the extreme nature of earthquake
clustering. The two modes are also well separated in space–time
(Fig. 4b). The cluster mode (lower proximity values) is mainly
composed of aftershock sequences and swarms, and is primarily
responsible for the space–time clustering discussed and quanti-
fied in this work. The declustering illustrated in Figure 3c
involves stochastic thinning based on the proximity values; this
helps avoiding a sharp cut along the model separation line,
which might result in artificial inhomogeneities of the declus-
tered catalog (Zaliapin and Ben-Zion, 2020).

An informative way to look at earthquake clustering is to
estimate how many events are offspring of background events,
and hence may be viewed statistically as being triggered. In the
absence of clustering, each event belongs to the background
activity and does not produce offspring. In contrast, a high
clustering implies that a large proportion of earthquakes are
offspring to a small number of parent events. We estimate
the offspring relations using the nearest-neighbor approach;
informally, an event is considered an offspring if its nearest

neighbor proximity η to an earlier event (parent) belongs to
the cluster mode of the bimodal diagram of Figure 4.

Figure 5a shows the proportion of offspring events (y axis)
versus the proportion of parent events (x axis) for earthquakes
with M ≥ 2 in the catalog of Hauksson et al. (2012, extended)
for southern California during 1981–2020. The degree of esti-
mated offspring productivity (triggering) is striking: the single
1992 M 7.3 Landers earthquake has 15,389 (17%) offspring,
and over 50% of the events in the catalog are estimated off-
spring to mere 77 earthquakes withM ≥ 5. Figure 5b illustrates
the offspring analysis for several other regions examined in this
study; they all show a high offspring productivity (measured by
the deviation from the diagonal).

The results in Figures 1–5 suggest that the majority of
events in the observed earthquake catalogs belong to clusters
that occupy a small highly active part of the examined space–
time volume. This active part reflects primarily the particular
set of large events that occurred during the data acquisition
period and generated numerous aftershocks. This part might
be not representative of the long-term processes in the region.
For instance, large sections of the San Andreas and other major

Figure 4. Scale separation in the earthquake nearest-neighbor
proximity in southern California, using the catalog of Hauksson
et al. (2012, extended) with magnitudes M ≥ 3 during 1981–
2020. (a) Bimodal distribution of the nearest-neighbor earth-
quake proximity η. (b) Bimodal distribution of the time (x-axis)
and space (y-axis) components of the earthquake proximity. Red
line (log10 η � −1) depicts the separation between the cluster
(lower proximity) and background (higher proximity) modes in
both panels. The two modes are separated by several orders on
the proximity scale. This separation of scale facilitates the catalog
declustering, but the large number of events around the sepa-
ration line produces differences between alternative declustering
approaches. The color version of this figure is available only in the
electronic edition.
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faults in southern California have been relatively inactive dur-
ing the data acquisition period 1981–2020 in the Hauksson
et al. (2012, extended) catalog. Similarly, the two M ≥9 earth-
quakes in the examined ISC-GEM catalog (2004 M 9.3
Sumatra–Andaman and 2011 M 9.1 Tohoku) occurred in
Asia and do not fully represent regions prone to M 9-class
earthquakes (e.g., the Pacific Rim). We show below that earth-
quake clustering goes beyond the existence of relatively small
active space–time domains (nonempty voxels in the analysis of
Figs. 1 and 2) and extreme offspring productivity of the largest
events (Figs. 3 and 5). The nonuniform heavy-tailed event dis-
tribution is seen generically within seismically active space–
time volumes, biasing statistical analyses of seismicity at a vari-
ety of scales and with different event- and region-selection
criteria.

To reduce the bias caused by space–time clustering and
study more representative long-term processes, it is important
to sample the entire seismogenic volume more evenly. This is
the basic goal of catalog declustering. To inform declustering
efforts, we introduce a formal framework for assessing the
degree of earthquake clustering and show that strong cluster-
ing is a common robust feature of multiple seismically active
regions. We illustrate the analysis using the observed earth-
quake catalogs of southern California, western United States
(WUS), central and eastern United States (CEUS), Alaska,
Japan, global seismicity, and a synthetic catalog of the epi-
demic-type aftershock sequence (ETAS) model.

Quantifying clustering: ROC diagram of
earthquake space–time distribution
To systematically quantify the inhomogeneity of the space–
time distribution of seismicity, we use the receiver operating
characteristic (ROC) diagrams, following Ben-Zion and
Zaliapin (2020). Specifically, we partition the examined space–
time volume into voxels, count events in the voxels, and con-
struct a diagram (Fig. 6a) that shows the proportion of events

in the most populated voxels (y axis) versus the proportion of
such voxels (x axis). Section A of the supplemental material
formally defines the diagram. Considering only nonempty vox-
els ensures that the analysis is not affected by selection of the
boundaries of the examined region, which can have a strong
effect on the number of empty voxels. We note also that using
only nonempty voxels decrease the estimated degree of cluster-
ing. The sorting of counts implies that the diagram always stays
above the diagonal and connects the origin to the upper-right
corner (1,1).

The diagonal line corresponds to a constant count within
nonempty voxels. It may be useful to think of a constant count
as the expected value of a model that assigns an identically dis-
tributed event counts to all examined voxels, for example, uni-
form distribution of events among the voxels. Convexity of the
diagram (deviation from the diagonal) reflects nonuniformity
in the event distribution; a large number of events occur within
a small number of voxels. Observe that the ROC analysis only
focuses on relative rates of events in different voxels and not on
the absolute values of the rates. We quantify the nonuniformity
of the ROC diagram by the Gini coefficient G defined as twice

Figure 5. Triggering diagram for earthquakes in (a) southern
California and (b) other regions. Proportion of offspring
(y axis) produced by a given proportion of the largest earthquakes
(x axis). The offspring relations are identified by the method of
Zaliapin and Ben-Zion (2020). The diagonal line corresponds to the
absence of triggering (all events belong to the background). The
deviation of the observed line from the diagonal signifies a large
fraction of offspring events. The axes are scaled with a power of
0.25 to zoom-in the left part of the diagram, highlighting that a
very small number of largest events triggers a significant fraction of
the catalog. (a) Earthquakes with magnitude M ≥ 2 in the
Hauksson et al. (2012, extended) catalog during 1981–2020.
(b) All catalogs examined in the study; see Table 1 for catalog
description. ComCat, comprehensive catalog. The color version of
this figure is available only in the electronic edition.
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the area between the diagram and the diagonal line. All realistic
values of G are within the interval (0,1), where 0 corresponds to
constant counts and 1 to an extreme concentration of all events
within a single voxel. Tracking the temporal evolution of G
provides a way of analyzing evolving localization of seismicity,
as was done in Ben-Zion and Zaliapin (2020). Here, we focus
on a cumulative value of G calculated for an entire examined
space–time volume.

To develop intuition about the G scale, Figure 7 shows three
1D synthetic examples of nonzero event counts with different
degrees of nonuniformity (Fig. 7a–c) and their ROC diagrams
with respectiveG values (Fig. 7d). All examples correspond to 50
cells with comparable average event counts. Figure 7a shows the
most clustered sequence. The event counts substantially deviate
from their mean value, varying between 1 and about 800; this
corresponds to G = 0.76. Figure 7b shows an intermediate
clustering with event counts between 1 and roughly 200; here
G = 0.49. Figure 7c shows the least clustered sequence in which
all counts are close to the mean of 50, and G is about 0.1.

The ROC diagram for the space–time partition of the
southern California seismicity shown in Figure 6a (red) has
G = 0.79. In particular, we observe again that 50% (44,638)
of the events are contained within only 2% (86) of nonempty
voxels, and 80% (71,464) of the events are contained within
only 16% (478) of nonempty voxels. The corresponding dia-
grams for the marginal spatial (green) and temporal (blue) par-
titions of events illustrated in Figure 1a and 1b have G values of
0.74 and 0.47, respectively. The spatial clustering is evidently
stronger than the temporal clustering, and the joint space–time
partition is more clustered than each of its marginals.

Focusing on coupled space–time clustering
The high degree of clustering in our analysis of southern
California seismicity (Fig. 6) is strongly affected by the concen-
tration of seismicity around the main faults (Fig. 1a) and strong
decay of earthquake rates with distance from the fault cores.

Indeed, the space (green) and space–time (red) clustering dia-
grams in Figure 6a are similar to each other, and the respectiveG
values of 0.74 and 0.79 are close as well. This suggests that the
marginal space inhomogeneity of earthquake distribution
(related to the active fault network) contributes significantly to
the overall earthquake clustering. In other words, the space–time
(red) curve in Figure 6a would be convex, and the respective
clustering would be high, even for a stationary rate of seismicity,
simply because some regions are more active (during the data
acquisition period) than the others. The clustering can be sim-
ilarly affected by the marginal time inhomogeneities. Such mar-
ginal inhomogeneities may represent the actual long-term

Figure 6. Quantifying clustering of earthquakes in southern
California with the receiver operating characteristic (ROC) dia-
gram. The analysis uses the catalog of Hauksson et al. (2012,
extended) during 1981–2020 with magnitudeM ≥ 2, and space–
time voxels with square space projection of latitude size 0.25°
and 1 yr duration. (a) Proportion of earthquakes (y axis) that
occurred within a given fraction (x axis) of the most active voxels.
The diagonal line corresponds to a constant rate of events in the
nonempty voxels. The results for the joint space–time partition
are shown by the red line; results for the marginal space and time
partitions are shown by green and blue lines, respectively. (b) The
proportion (y axis) of earthquakes that occurred within a given
weighted fraction (x axis) of voxels. The weight of a voxel is
proportional to the number of background events that occurred
within the space projection of the voxel during the entire
examined time interval. The diagonal line corresponds to the
factorized rate J(x,t) of events with marginal space and time
distribution taken from the estimated background. The deviation
of the observed line (blue) from the diagonal signifies temporal
fluctuations of event rate within local areas (coupled space–time
inhomogeneities). The red line corresponds to a declustered
catalog (background events). The background events are iden-
tified using the method of Zaliapin and Ben-Zion (2020). The
color version of this figure is available only in the electronic
edition.
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dynamics of seismicity. We would like to eliminate the effects of
marginal space and time inhomogeneities on clustering, and
only quantify the coupled space–time variations.

The ROC framework is well suited for achieving this goal.
This is illustrated in Figure 6b where the x axis is scaled in such
a way that the product J(x,t) = S(x)T(t) of the marginal space S
(x) and marginal time T(t) rates of the estimated background
seismicity corresponds to the diagonal. Formally, the x axis in
Figure 6b shows the proportion of the factorized rate J(x,t)
within the most active cells of the examined process, and
the y axis shows the respective proportion of events in the
examined process. Section A of the supplemental material for-
mally defines this scaled version of the diagram and illustrates
(Fig. S1) a calculation of the factorized rate. In this analysis, the
marginal space and time inhomogeneities are reflected by J(x,t)
and hence are mapped onto the diagonal. Only coupled space–
time irregularities—short-term temporal fluctuations in local
areas—cause deviation from the diagonal. The overall degree
of the coupled space–time clustering is measured by the Gini
coefficient G of this scaled ROC diagram.

The blue curve in Figure 6b corresponds to the full catalog
and the red curve to a declustered version based on the nearest
neighbor methodology of Zaliapin and Ben-Zion (2020). We
also use this declustering method for estimating the back-
ground activity used in calculating the factorized rate J(x,t).
Figure 6b demonstrates that the overwhelming majority of
events in the full catalog occur within a very small fraction
of the seismically active volume, even after controlling for the
marginal space and time irregularities. For example, 50% of the
events occurs within 2% of weighted voxels (red circle). This
reflects coupled spatiotemporal clustering mainly caused by
aftershock sequences and swarms, and not the concentration
of events along the fault network. The declustered catalog (red
line) lacks this space–time coupling, and its ROC diagram
closely follows the factorized intensity J(x,t).

Figures S2–S4 and Table S1 illustrate high stability of the
ROC-based clustering analysis with respect to the following

choices: (1) lowest examined magnitude, (2) space and time
sizes of partition voxels, and (3) the number of background
events in a declustered catalog. In particular, our analysis of
southern California seismicity with magnitudeM ≥ 2 indicates
that the clustering Gini coefficient G varies roughly within ±0.1
unit when changing the lowest magnitude within 2 units
(between 2 and 4), the number of examined events within 2
orders (between 89,000 and 800), the duration of time discre-
tization within 2 orders (between one month and 10 yr), the
lengths of space cells within 1 order (between 3 and 100 km),
and the number of estimated background events between 10%
and 25% of the full catalog. In the examined cases, the G coef-
ficient was found to be representative if the average number of
events in nonempty voxels is above 5 and total number of
voxels is above 300.

Clustering in other regions and ETAS model
To further illustrate clustering properties, we analyze several
other seismically active regions and synthetic seismicity of
the ETAS model. The catalogs are described, and the results
are summarized in Table 1. Specifically, we use the U.S.
Geological Survey (USGS) comprehensive catalog to examine
seismicity of the WUS using events with M ≥ 3 (Table 1, row
2); CEUS east of Kansas and Nebraska (to exclude induced
seismicity that dominates some areas) using events with M
≥ 2.5 (row 3); Japan using events with M ≥ 4 and depth less
than 70 km (row 4); and Alaska using events with M ≥ 4 and
depth less than 70 km (row 5). We use the ISC-GEM v.8 cata-
log to examine the global seismicity (row 6). Finally, we

Figure 7. Synthetic examples of ROC clustering analysis. Three
synthetic sequences of nonzero cell counts with 50 distinct values
and average cell count of about 50 have Gini coefficients of (a) G
= 0.76, (b) G = 0.49, and (c) G = 0.1. Their ROC diagrams are
shown in (d). The color version of this figure is available only in
the electronic edition.
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examine a version of the ETAS model (row 7) with spatial
parameters fitted for southern California by Gu et al. (2013).
We keep the same clustering analyses parameters as those used
for the southern California catalog, other than increasing the
linear dimension of space cells to 1000 km for all catalogs
except ETAS, to reflect their larger spatial extent. The southern
California results that we discussed and illustrated in earlier
sections are listed in row 1 of Table 1.

All examined catalogs show similar general clustering pat-
terns. The overall degree of clustering, measured by the clus-
tering coefficient G of a full catalog with respect to constant
rate (column 9), has the highest value, which is above 0.6
in all examined cases. The variability of this clustering value
with respect to the space–time resolution is mild, roughly
within ±0.1 unit. This mainly reflects complex geometry of
the fault networks, concentration of earthquakes around the
faults, and decay of earthquake rates off the faults. The coupled
space–time clustering independent of space and time marginal
fluctuations, measured by clustering of a full catalog with
respect to the factorized rate J(x,t) (column 10), has smaller,
and still well confined, values of G. The WUS and Japan cata-
logs have the highest coupled space–time clustering, with G =
0.38 and 0.36, respectively. The CEUS and Alaska show lower
coupled space–time clustering, with G = 0.17 and 0.18, respec-
tively. The global ISC-GEM catalog has the lowest clustering
among the examined natural seismicity cases, with G = 0.11. In
the observed seismicity catalogs, G has a negative relation with
the estimated proportion of background events, which is
expected according to its definition. The coupled space–time
clustering of declustered catalog, measured by clustering of
background events with respect to the factorized rate (column
11), is always below 0.05.

The ETAS model with parameters fitted for southern
California by Gu et al. (2013) has a substantially lower degree
of clustering G (Table 1, row 7) than that of the observed
southern California seismicity, despite comparable space, time,
and magnitude ranges of the two catalogs. The clustering mea-
sure G of the full ETAS catalog with respect to the constant rate
(column 9) is G = 0.66. This value and the respective 95% con-
fidence interval (CI) of (0.58, 0.71) are below the value G = 0.77
that is observed for the real catalog of this region (Table 1, row
1). An even bigger difference with respect to the observed seis-
micity is seen in clustering of the full ETAS catalog with respect
to the factorized rate J(x,t) (column 10): The average Gini coef-
ficient in the model is merely G = 0.05 with the CI of (−0.09,
0.32), which is comparable to the G values in the declustered
observed catalogs. This indicates that the examined ETAS cata-
log has no substantial space–time coupling beyond that dic-
tated by inhomogeneous background distribution. This is
related to the following three features of the ETAS model.
(1) The model aftershock sequences are very short compared
with the observed aftershock sequences. Accordingly, although
the degree of clustering increases (up to G = 0.3) for short time

discretizations that are comparable to the typical aftershock
duration, it remains low for time discretizations that are longer
that the typical aftershock duration. As a result, the average
clustering value reported in the Table 1 is low. (2) The largest
earthquakes occur within the most active space regions, which
is often not the case in actual observations. (3) The rate of clus-
tered events is proportional to the overall region activity,
because each event of a given magnitude has the same offspring
productivity independently of its location or occurrence time.
This is not the case in natural data, in which different regions
may have different productivity rates, and clustering may
change with time (especially for swarms). The last two features
imply that the clustered seismicity in the examined version of
ETAS provides a reasonable sampling of the model back-
ground event distribution (i.e., areas with higher or lower rates
of background events would have higher or lower rates of clus-
tered events, respectively), although the rates of clustered and
background events are not linearly related. This is different
from observed seismicity, where high clustering rates may cor-
respond to low background rates (e.g., the aftershock sequence
of 1992M 7.3 Landers earthquake in southern California), and
low clustering rates may correspond to high background rates
(e.g., the Geysers geothermal area). This explains why the
degree of space–time factorization is much higher, and the
clustering measure G is much lower, in the ETAS model com-
pared to that in the examined observed catalogs. The results
indicate that properties of observed seismicity are significantly
less homogeneous than those in the examined ETAS model
with parameters fitted regionally. The ETAS parameters can
be fitted adaptively to different regions or even to individual
aftershock sequences (e.g., Enescu et al., 2009), which would
likely improve the correspondence between the clustering
properties of the ETAS model and observations.

Declustering Earthquake Catalogs
The high spatiotemporal clustering of earthquakes illustrated
in Figures 1–6 and Table 1 implies that the statistical properties
of a full catalog can be dominated by a miniscule space–time
volume highlighted by aftershocks of the largest observed
events. Our results suggest that clustering (triggering) might
be responsible for the overwhelming majority of events in a
catalog (Fig. 5). The actual clustering might be even higher
than those estimated here, because some events may be trig-
gered by earthquakes outside the examined space–time region
(van der Elst, 2017). A full catalog strongly amplifies short-
term triggering relative to the long-term interseismic back-
ground processes. Catalog declustering is aimed at removing
this bias and facilitating analyses of additional, subtler, features
of seismicity.

In addition to addressing why it might be essential to
decluster earthquake catalogs, it is important to consider care-
fully how to decluster. At present, there is no physical criterion
that can separate independent (background) earthquakes from
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dependent (clustered, triggered) ones. More elementally,
because the dynamics of seismicity is an unsolved problem
(e.g., Ben-Zion, 2008), we do not know to what extent natural
processes operate in these terms (background, clustered, main-
shock, foreshock, and so forth). Therefore, the problem of
earthquake declustering has neither a definite physical nor
mathematical formulation, and the desired form of a declus-
tered catalog may depend on the application at hand. In some
problems, such as stress inversions of focal mechanisms
(Michael, 1987; Vavryčuk, 2014; Martínez-Garzón et al.,
2016), it is useful to retain the largest number of background
events likely to be produced by the remote tectonic loading,
even if the resulting catalog remains nonstationary. In other
problems, such as evaluating long-term seismic hazard
(Petersen et al., 2018; Llenos and Michael, 2020), it may be
desired to obtain a quasi-stationary background activity, even
if this means removing additional events. There are numerous
sources of nonstationarities in modern high-quality catalogs
(e.g., Hauksson et al., 2012; Ross et al., 2019), including non-
tectonic triggering (e.g., Bettinelli et al., 2008; Johnson et al.,
2019; Hsu et al., 2021), nonstationary postseismic relaxation
below the seismogenic crust (e.g., Ben-Zion et al., 1993;
Pollitz et al., 2014), and various catalog uncertainties (e.g.,
Kagan, 2003; Hauksson et al., 2012; Zaliapin and Ben-Zion,
2015). Accordingly, a stationary declustered catalog—a
renowned Poisson process of background events discussed
in the classic works of Gardner and Knopoff (1974) and
Reasenberg (1985)—is not necessarily an appropriate target.
More generally, it seems that any hard and fast statistical cri-
terion of a declustered catalog can be easily falsified with
modern tools, yet often in a noninformative way (Luen and
Stark, 2012). Because there is no unique physical theory of
earthquake clustering, there is no unique “right solution” to
the declustering problem. The statistical and physical criteria
of a desirable declustering for a given problem should meet in
the middle. Declustering should be viewed as an interactive
process, allowing an expert user to resolve a trade-off between
the number of background events and their emerging proper-
ties (e.g., time homogeneity, coupled space–time clustering,
and so forth). Examining a range of possible backgrounds
and the implied results for a problem at hand may be more
informative than a judicious selection of a single “correct”
declustering. Quoting Utsu (1970, 132 pp.), “… a definition
of aftershocks uniformly applicable to all kinds of aftershock
problems is difficult to establish, and a suitable working def-
inition must be formulated according to the character of the
problem and the data employed.” Increasingly comprehensive
data sets, statistical techniques, and computing power provides
new opportunities and challenges for making suitable working
definitions for different purposes.

Declustering significantly modifies the catalog and may
alter its key statistical attributes, such as b-value (relative pro-
portion of large and small events), a-value (earthquake annual

rate), fractal dimension of hypocenters, relative rates of events
in different regions, and so forth (e.g., Knopoff, 2000; van
Stiphout et al., 2011; Llenos and Michael, 2020; Mizrahi et al.,
2021; Taroni and Akinci, 2021). Different types of declustering
affect various attributes to different extents. For example,
declustering may start with identifying clusters and then select-
ing a single event from each cluster as background (and
remove all other events as clustered). The two most popular
choices are the first event or the largest event. Selecting the
first event from each cluster might not significantly affect
the b-value (e.g., Llenos and Michael, 2020), but in this case
the largest event in the catalog may not belong to the back-
ground. Selecting the largest event from each cluster retains
the largest events (mainshocks) as background, but this will
necessarily deflate the b-value increasing the relative propor-
tion of large events (Mizrahi et al., 2021). As mentioned, the
choice of declustering method and its implementation (e.g.,
parameter selection) should be made by the user. An informed
decision would consider various aspects of the examined cata-
log—the maximal magnitude, the range of magnitudes, level of
completeness, inhomogeneity of spatial distribution, degree of
clustering, regional cluster style, as well as how the declustered
catalog will be used. The ROC-based clustering framework pre-
sented here might be a useful tool in assessing the degree of
marginal and coupled space–time clustering and guiding a user
in quantifying an appropriate degree of declustering suitable
for the problem at hand. For example, the declustering tech-
nique of Zaliapin and Ben-Zion (2020), which we use in this
work, involves a threshold parameter α0 that controls the num-
ber of estimated background events in a declustered catalog.
Depending on the value of α0, the declustered catalog will have
a larger or smaller number of events, although the relative spa-
tial earthquake background rates (that reflect the existence of
high- and low-activity regions) is preserved. A possible cri-
terion for selecting a proper threshold, and hence the number
of background events, could involve estimating the clustering
coefficient G � G�α0� of a declustered catalog for different val-
ues of α0 and selecting the threshold that corresponds to the
maximal number of background events with G below a prede-
fined value G0. Table S1 illustrates the variability of back-
ground level as a function of the threshold α0 and
demonstrates stability of our clustering results with respect
to this parameter.

There are several approaches (and respective algorithms)
for declustering seismicity, each with its pros and cons. We
refer to van Stiphout et al. (2012) for a technical review of
the methods up to that time. The classical window technique
initiated by Knopoff (1964) and Gardner and Knopoff (1974)
and its ramifications (e.g., Uhrhammer, 1986; Rosson et al.,
2019) are intuitive and simple to implement; this approach
is traditionally used in the USGS National Seismic Hazard
Map (Petersen et al., 2018). However, there is an increasing
awareness that window techniques can be incommensurable

Volume XX • Number XX • – 2021 • www.srl-online.org Seismological Research Letters 11

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220210127/5412186/srl-2021127.1.pdf
by zaliapin 
on 22 September 2021



with the quality and detail of modern catalogs (e.g., Teng and
Baker, 2019; Peresan and Gentili, 2020). The most obvious
drawback is the appearance of holes (regions with no activity)
around large earthquakes, which may be inconvenient for fur-
ther analyses. A more elaborate technique of Reasenberg
(1985) connects events in clusters according to adaptive
space–time interaction zones and provided good performance
in California (for which it has been originally developed) and
other regions. This technique has several parameters that
might be region and catalog dependent.

Approaches based on the ETAS model (e.g., Zhuang et al.,
2002; Console et al., 2010; Llenos andMichael, 2020) have math-
ematical appeal and are effective for treating major aftershock
sequences (e.g., Woessner et al., 2011; Field et al., 2017;
Shcherbakov, 2020), but they can have many parameters and
may be computationally demanding (e.g., Veen and
Schoenberg, 2008). The ETAS model assumes a rigidly parame-
terized conditional intensity of earthquake clusters, so its appro-
priateness depends on how well this assumption is met by the
examined data and how well one can estimate the multiple
model parameters (Ogata, 1999; Wang, Schoenberg, and
Jackson, 2010; Schoenberg, 2013; Seif et al., 2017). A more flex-
ible approach of Marsan and Lengline (2008) offers a possibility
to work with an arbitrary (but fixed for the entire catalog) cluster
model. Declustering is reduced here to estimating the triggering
kernel, which is done by recursive approximation. The declus-
tering method of Zaliapin and Ben-Zion (2020) used in the
present work is more exploratory and parsimonious in spirit.
It uses a nonparametric definition of a cluster, which is quanti-
fied using the nearest-neighbor earthquake proximity (Baiesi and
Paczuski, 2004; Zaliapin and Ben-Zion, 2013, 2016). The method
is highly robust with respect to its parameters and various catalog
imperfections, and allows users to select different degree of
declustering (different number of background events) while pre-
serving the relative spatial rates of events in different regions. The
nonparametric nature of this technique makes it possible for dif-
ferent forms of clustering to coexist in different parts of the cata-
log. Notwithstanding its nonparametric nature, the technique
can closely reconstruct a time-stationary space-inhomogeneous
Poisson background of the parametric ETAS model (Zaliapin
and Ben-Zion, 2020). This flexibility comes at a price of not hav-
ing an optimization procedure, as is common in nonparametric
methods (e.g., Wasserman, 2006).

Alternative declustering techniques can produce compa-
rable results in selected problems and data sets. For example,
the nearest-neighbor declustering of Zaliapin and Ben-Zion
(2013, 2020) produces results comparable with that of
(1) the Regionally Optimized Background Earthquake Rates
from ETAS method in application to probabilistic seismic haz-
ard assessment of induced seismicity of Oklahoma and Kansas
and tectonic seismicity of the San Francisco Bay area (Llenos
and Michael, 2020), (2) the Reasenberg (1985) declustering
and hazard analysis of Oklahoma and Kansas (Teng and

Baker, 2019), (3) ETAS stochastic declustering on Zhuang et al.
(2002) in seismicity of northeastern Italy and western Slovenia
(Varini et al., 2020), and some other methods and regions (e.g.,
Peresan and Gentili, 2020; Mizrahi et al., 2021). At the same
time, other problems and/or data sets may be more sensitive to
specific aspects of the used declustering method (e.g., van
Stiphout et al., 2011; Mizrahi et al., 2021).

A useful perspective on declustering is provided by the exist-
ence of two characteristic space–time scales in earthquake
dynamics that was illustrated in the bimodal distributions in
Figure 4. Multiple declustering algorithms successfully and con-
sistently eliminate the bulk of the cluster mode (even if this mode
is not explicitly defined or used in the declustering procedure)
and keep the bulk of the background mode, which is facilitated
by the previously mentioned scale separation. Some declustering
methods still leave a collection of events with quite complex
space–time patterns and remaining clustering. The main
differences among alternative declustering approaches concern
treating the neighborhood of the red line in Figure 4 that sep-
arates the modes. Notwithstanding the overall scale separation,
this neighborhood includes a substantial proportion of the cata-
log, so the results of different procedures may differ significantly.

Discussion
This article illustrates the general existence of strong coupled
space–time clustering of natural earthquakes that remains after
accounting for the marginal space and time inhomogeneities of
observed catalogs. The ROC-based Gini coefficient G provides
an efficient and stable tool for quantifying the degree of
coupled space–time clustering. The degree of earthquake clus-
tering is substantially stronger than what might be suggested
by visual inspections (Fig. 3) and modeling based on the ETAS
framework with parameters based on a regional fitting
(Table 1). Studies aiming at uncovering additional features
of seismicity beyond the strong clustering dominated by after-
shocks of the largest events or expected long-term properties
can benefit from catalog declustering prior to the analyses.

The ROC diagram with the factorized earthquake intensity J
(x,t) (see the Focusing on Coupled Space–Time Clustering sec-
tion) provides a convenient assessment of the coupled space–
time clustering in a catalog (Fig. 6b). Large values (close to 1) of
G indicate that a large proportion of events is concentrated in a
small fraction of the examined space–time volume, and this
concentration is not explained by the active fault networks
(the entire ROC diagram gives more complete information).
This implies that some statistical analyses might be biased, hav-
ing an amplified focus on the concentration regions in the
examined catalogs and not reflecting general long-term prop-
erties of seismicity in the regions. Previous applications of the
ROC diagram to problems of seismicity used the version of the
Quantifying Clustering: ROC Diagram of Earthquake Space–
Time Distribution section and Figure 6a (Zeng et al., 2018;
Ben-Zion and Zaliapin, 2020). The new alternative version
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demonstrated in Figure 6b and section A of the supplemental
material is more informative about coupled space–time clus-
tering properties. It distinguishes between persistent spatial
fluctuations of rate that take place during the entire examined
time interval (factorized case) and fluctuations that are only
seen during short time periods (nonfactorized case). Similarly,
it distinguishes between persistent temporal fluctuations that
affect the entire examined space (factorized case) and only
local areas (nonfactorized case).

The ROC approach may also facilitate assessing the quality of
declustering; a properly declustered catalog would correspond to
an almost-diagonal ROC diagram and a small clustering valueG.
Notably, this approach is not aimed at obtaining a stationary
declustered catalog, which might be an improper target (at least
for some studies). Instead, it defines a target of declustering as a
catalog with a fully factorized event rate. A declustered catalog
that passes the proposed factorization test may include temporal
variations of event rates caused by long-term processes not
related to event–event triggering (e.g., regional changes in the
background intensity due to viscoelastic deformation in the
lower crust or anthropogenic activities). The proposed clustering
measure G (and other possible metrics of the ROC diagram)
complement the currently used measures of declustering quality
(Luen and Stark, 2012; Zaliapin and Ben-Zion, 2020). More gen-
erally, we propose that the quality of declustering should be
assessed not via the properties of the final product (e.g., station-
ary sequence of events) but via the degree to which the catalog
inhomogeneities (and related biases) have been removed.

As is mentioned in the Introduction, a catalog may include
earthquakes that are triggered by events outside of the exam-
ined space–time domain (Wang, Jackson, and Zhuang, 2010;
van der Elst, 2017). Such events may form acute clusters that
disturb the space–time factorization of the examined catalog
(e.g., aftershocks of a large event just outside of the examined
region), or they can be evenly distributed over the examined
domain (e.g., remote aftershocks of all events outside the
examined region, as discussed by van der Elst, 2017) and
closely fit a factorized rate approximation. In the former case
(nonfactorized rate), the clustering measure G would readily
detect the cluster, although its parent event is not available
for analysis. The declustering method of Zaliapin and Ben-
Zion (2020) used here can efficiently remove such clusters.
This is possible because the relative proximities of neighboring
events (which is the main information used for declustering)
substantially varies within an aftershock sequence even if the
mainshock is not observed. Some alternative declustering tech-
niques can also easily detect such clusters. In the latter case
(factorized rate), we note that evenly distributed remote after-
shocks that dominate current seismicity (van der Elst, 2017)
were only shown so far in the context of the ETAS model.
They can also be produced by other models that attribute cur-
rent activity to distant parents. However, the same events may
also be explained differently (e.g., as background) using models

that do not have this feature, so their identification crucially
depends on the used model. The nearest-neighbor declustering
used in this work takes a flexible approach to this situation.

The procedure implemented in Zaliapin and Ben-Zion (2020)
first tries removing the clustered events responsible for the non-
factorized part of the event rate and then allows a user to select
(via the cluster threshold α0) the probability for a given event
from the factorized rate population to be background or clus-
tered. Because at present there is no objective criterion to decide
how the factorized rate should be partitioned between the
clustered and background populations, alternative declustering
techniques can result in substantially different numbers of back-
ground events when applied to the same catalog (e.g., van
Stiphout et al., 2012). As already mentioned, although there
exists a part of seismicity that is clearly clustered and a part that
is clearly background, the gray zone between these two subpo-
pulations may be large enough to produce substantially different
versions of a “properly” declustered catalog.

The ROC-based clustering measure G is related to the
Shannon entropy (Shannon, 1948), which is defined for a dis-
tribution p(i) asH � −Σp�i� log p�i� and has the same informal
interpretation: quantifying the degree of nonuniformity. The
main difference between the entropy H and clustering G is that
the latter is much less affected by the number of bins in the
distribution (the total number of voxels in our case). Figure 8
compares the entropy H and clustering G in a synthetic

Figure 8. Comparing the Gini coefficient G and Shannon entropy
H measures of nonuniformity. The curves show the Gini coeffi-
cient G (x axis) in analysis with respect to a constant rate versus
Shannon entropy H (y axis) for 2400 synthetic discrete distri-
butions with different number N of bins (color). The entropy H is
significantly affected by the number N of bins. The entropy H and
clustering G are closely (nonlinearly) related for distributions with
the same number of bins. The color version of this figure is
available only in the electronic edition.
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experiment that produces 400 measures with different degree
of nonuniformity for each of the bin counts N = 3, 10, 30, 100,
300, and 1000. The entropy and clustering are closely related
for each given N. However, the entropy is heavily affected by
the number of bins, whereas clustering is not sensitive to this
parameter. The two measures have a negative (nonlinear) rela-
tion, because G increases andH decreases for a higher degree of
nonuniformity. We also observe that H has a weaker discrimi-
nating power for low G values, which is reflected in almost zero
slopes of the curves in Figure 8 at G < 0.2.

The increasing quality of earthquake records and the com-
plexity of problems associated with seismicity require refined
and more sophisticated methods for earthquake clustering
analyses, because space–time clustering dominate natural
earthquake catalogs. Declustered versions of seismicity are
needed for various analyses. Until there are accepted solutions
for the physics and mathematics behind different forms of
earthquake clustering, the used declustering approaches
remain intrinsically heuristic and exploratory. Simplicity of
implementation and flexibility of output have some advantages
at the current stage, but ultimately the appropriate form of the
resulting product (declustered catalog) depend on the quality
of the full catalog and problem at hand.

Data and Resources
The relocated catalog of Hauksson et al. (2012) is available from the
Southern California Earthquake Data Center (https://scedc.caltech.edu/
data/alt-2011-dd-hauksson-yang-shearer.html) The U.S. Geological
Survey (USGS) comprehensive catalog (ComCat) is available at
https://earthquake.usgs.gov/data/comcat/. The International
Seismological Centre–Global Earthquake Model (ISC-GEM)
Earthquake Catalogue is available at doi: 10.31905/d808b825. The epi-
demic-type aftershock sequence (ETAS) catalog is available in the elec-
tronic supplement of Gu et al. (2013, doi: 10.1002/jgrb.50306). All
websites were last accessed in September 2021. Supplemental material
for this article includes a formal definition of the receiver operating char-
acteristic (ROC) diagram and describes stability analysis of the clustering
measure G using data from the southern California.
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