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Introduction  18 

The Supporting Information discusses theoretical motivation for the proposed declustering 19 
algorithm, outlines the main steps of its numerical implementation, and includes figures with 20 
additional information about declustering in synthetic and real data. It also includes a version of 21 
declustered catalog of Hauksson et al. [2012].  22 
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S1. Motivation of the proposed declustering algorithm 23 

 24 

Here we provide motivation and justification for the proposed declustering algorithm. It is 25 

based on the distribution analysis for the nearest-neighbor proximities and thinning theory 26 

of point processes. We discuss the case w = 0 (no magnitude component), which 27 

corresponds to the main version of our analysis. The magnitude-dependent case can be 28 

examined in a similar fashion. The discussion below explains why the proposed algorithm 29 

works in selected basic models of clustered fields, and why one can expect it to work in 30 

more general situations. We also discuss specific conditions under which the algorithm 31 

gives biased results.  32 

 33 

S1.1 Weibull approximation to the nearest-neighbor proximity distribution 34 

 35 

The basic model that we use in this analysis is a Poisson space-time point field that 36 

is stationary in time and homogeneous in d-dimensional space, with independent space and 37 

time components. We refer to the process by its counting measure [Daley and Vere-Jones, 38 

2003] 39 

 40 

H(A) = number of events within space-time region A. 41 

 42 

The first moment measure of the process  43 

 44 

M(A) = E[H(A)] =  A dt dx1…dxd = |A| 45 

 46 

is completely specified by the process intensity  [yr–1km–d]. The number of events that 47 

occurred within a space-time region A with volume |A| is a Poisson random variable with 48 

intensity |A|. We define the earthquake proximity sphere centered at event i with radius x 49 

as the space-time region 50 

 51 

S(i,) ={(t,x): the proximity from event i to (t,x) is less than }. 52 

 53 

The nearest-neighbor proximity i of Eqs. (1,3) of the main text calculated for event 54 

i signifies that there are no events in the sphere S(i,i). The Poisson distribution for the 55 

number of events in space-time volumes implies 56 

 57 

Prob[i > x] = Prob[H(S(i,x))=0] = exp{–|S(i,x)|}. 58 

 59 

This allows one to find the distribution of the nearest-neighbor proximities. A complete 60 

analysis, which involves some additional technical requirements and auxiliary parameters 61 

to prevent spheres of infinite volumes, leads to the following approximate distribution [see 62 

Zaliapin et al., 2008; Hicks, 2011]: 63 

 64 

Prob[i > x]  exp{–xk }.                                            (S1) 65 

 66 
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Here , k are functions of dimension d and the auxiliary parameters; these functions are 67 

constants with respect to x. We assume that the values of , k are constants for a given 68 

examined catalog.   69 

The approximation (S1) is the Weibull distribution with shape parameter k and 70 

scale parameter s = () –1/k. It provides a close fit to the proximities in the observed 71 

earthquake data and synthetic catalogs [Zaliapin and Ben-Zion, 2013a], and can be used 72 

for both integer and fractional dimensions d (see also Fig. S9). 73 

The numerical values of the parameters , k depend on the analysis assumptions 74 

(including possible errors in determining the fractal dimension of the epicenters); they are 75 

best estimated from the data. Analyses of multiple observed catalogs suggest that the 76 

background field corresponds to an approximate range 0.75  k  1.25, and often the 77 

estimated values of k are close to unity. Recall that the case k = 1 in (S1) corresponds to 78 

the exponential distribution; the same as the distribution of interevent times in a 79 

homogeneous Poisson process [Daley and Vere-Jones, 2003]. 80 

 81 

S1.2 Gumbel approximation for the log-proximities 82 

 83 

We start with a result that connects the Weibull and Gumbel distributions.  84 

 85 

Lemma 1. Suppose a random variable X has the Weibull distribution with scale parameter 86 

s > 0 and shape parameter k > 0: 87 

Prob[X > x] = exp{–(x/s)k }, x  0.                                       (S2)  88 

 89 

Then, the random variable Y = log10(X) has the Gumbel (minimum) distribution  90 

 91 

Prob[Y > y] = exp{–exp{(y – )/ }}, – <y < ,                           (S3) 92 

 93 

with location parameter  = log10 s and scale parameter   = (k ln10) –1. In particular,  94 

 95 

E[Y] = log10 s – (k ln10)–1 and  Var[Y] = 1/6 2 (k ln10)–2, 96 

 97 

where   = 0.5772… is the Euler-Mascheroni constant. Inversely, if random variable Y has 98 

the Gumbel distribution (S3), then the random variable X = 10Y has the Weibull distribution 99 

(S2). 100 

 101 

Proof. By transforming the cumulative distribution functions of the Weibull and Gumbel 102 

distributions. 103 

 104 

Consider now a point field with space-time intensity  [yr–1km–d] and suppose that 105 

its nearest-neighbor proximity i is given by the Weibull distribution (S1) with shape 106 

parameter k and scale parameter s = () –1/k.  An example of such process is given by the 107 

homogeneous Poisson model of Sect. S1.1. Lemma 1 implies that the logarithm log10i of 108 

the nearest-neighbor proximity has the Gumbel (minimum) distribution, with mean 109 

 110 

E[log10i] = –1/k log10() – (k ln10)–1 111 
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and variance  112 

Var[log10i] = 1/6 2 (k ln10)–2. 113 

 114 

Here, the mean depends on the process intensity  and the parameters , k; and the variance 115 

is independent of the process intensity  and is completely determined by the parameter k. 116 

Accordingly, the random variable   117 

 118 

log10 i  = log10i – E[log10i] 119 

 120 

has the Gumbel distribution with zero mean and variance that is independent of the process 121 

intensity . Lemma 1 also implies that the random variable i has the Weibull distribution 122 

with shape parameter k and scale parameter exp(–/k). Importantly, the distribution of the 123 

random variable i does not depend on the process intensity .  124 

 125 

Next, we apply the distribution results of Sects. S1.1, S1.2 to each step of the declustering 126 

algorithm (Sect. 4.1 of the main text). 127 

 128 

S1.3 Step 1: Identifying the most clustered events  129 

 130 

This step takes advantage of the well-documented bimodality in the distribution of 131 

the nearest-neighbor proximities. Figure S8 illustrates this in the global NCEDC catalog 132 

(panel a) and Hauksson et al. [2012] catalog for Southern California (panel b). A sharper 133 

separation between the modes can be achieved by considering a 2D space-time 134 

representation of the proximity, see Sect. 3, Eq. (4), as discussed by Zaliapin et al. [2008] 135 

and Zaliapin and Ben-Zion [2013a]. Independently of whether the bimodality is present or 136 

not, we expect the right part of the distribution (large proximities) to correspond to the 137 

background seismicity. The left part (short proximities) is expected to be a mixture of 138 

background and clustered events. Application of the cutoff proximity 0 is intended to 139 

sample the long proximities, which quantify the (location-dependent) background event 140 

distribution. The randomized-reshuffled catalogs of Step 2, constructed with these sampled 141 

events, are used to approximate the distribution of nearest-neighbor proximities at each 142 

location in the absence of clustering. This estimation is necessarily biased (unless 0 = 0 143 

and the catalog is unclustered, which is not the case in most interesting practical situations), 144 

since it only uses a fraction of background events (those with parent proximity above 0) 145 

and hence underestimates the background intensity as each location (i.e., produces a higher 146 

fraction of large proximity values). The better is the separation of the clustered and 147 

background modes (see Fig. S8), the smaller is the bias. Even in presence of the bias, the 148 

resulting estimation should reasonably approximate the relative background intensity. This 149 

is confirmed by the analysis of synthetic ETAS seismicity in Sect. 6.  150 

 151 

S1.4 Step 2: Estimation of relative background intensity 152 

 153 

According to Sects. S1.1, S1.2, the empirical distribution of the elements in the 154 

proximity vector ki = (1,i,…,M,i) is approximated by the Weibull distribution with scale 155 

parameter that is proportional to (i)–1/k, where i denotes the estimated background 156 

intensity at location i, and k is the shape parameter close to unity.  157 



 5 

We notice that one can closely estimate the relative location-dependent background 158 

intensity only in cases when the separation of the background intensity from the cluster 159 

intensity is comparable at different locations. For instance, the location-dependent 160 

background intensity may substantially vary from place to place, but if it is always 161 

substantially lower that the cluster intensity, our heuristics works. Furthermore, if the 162 

location-specific background intensity substantially overlaps the cluster intensity, but the 163 

degree of overlap is approximately the same at all locations; the heuristics is still valid. The 164 

situation when our estimation may give substantially biased results is when the location-165 

dependent background intensity varies in such a way that in some locations it overlaps with 166 

the cluster intensity, and in other locations it does not. In this case, the proposed estimation 167 

may distort the relative background intensity levels. This is why we suggest to apply the 168 

technique to regions where the expected background intensities do not vary over an order 169 

of magnitude.  170 

 171 

S1.5 Step 3: Normalized nearest-neighbor proximities 172 

 173 

At this step, we obtain the normalized nearest-neighbor proximities i by rescaling the 174 

observed proximities i according to the mean of the proximity vector ki. The goal is to 175 

obtain distribution of i that is independent of the estimated location-specific background 176 

intensity i. The proposed normalization of Eq. (7) uses logarithmic representation of the 177 

proximity vector, and hence is less sensitive to possible outliers.  178 

In a catalog with constant background intensity , no clustering, and using 0 = 0, 179 

the normalized proximities i have the Weibull distribution, with parameters independent 180 

of the intensity ; see Sect. S1.2. One can expect that a similar argument is heuristically 181 

applied to a catalog with space-varying intensity (x), no clustering, and using 0 = 0. 182 

Finally, in presence of clustering and with 0 > 0, the right tail of the distribution of i is 183 

approximately Weibull with intensity-independent parameters, while the left tail might be 184 

heavier (a larger proportion of small values) depending on the cluster intensity.  185 

 186 

S1.6 Step 4: Thinning by the observed value of normalized proximity 187 

 188 

The main component of the declustering procedure is Step 4, which applies thinning with 189 

the retention probability of event i being proportional to its normalized proximity i. The 190 

motivation for this procedure comes from the general theory of thinning for point processes 191 

[Schoenberg, 2003; Daley and Vere-Jones, 2008]. As a simple motivation example, 192 

consider a (possibly multidimensional) Poisson point process with intensity (x) and apply 193 

thinning independently to every event with the retention probability p(x). Then the thinned 194 

process is Poisson with intensity p(x)(x). For instance, if the retention probability is  195 

 196 

p(x) = 0/(x),                                                        (S4) 197 

 198 

then the thinned process is homogeneous Poisson with constant intensity 0.  199 

Application of this general idea to thinning by estimated process intensity is a 200 

delicate problem; see Schoenberg [2003], Moeller and Schoenberg [2010], and Clements 201 

et al. [2012] for a comprehensive discussion and further references. Notably, in one-202 

dimensional case one can avoid complicated estimation of the process intensity, and use a 203 
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process-dependent thinning to still obtain a homogeneous point process. Specifically, it can 204 

be shown (see Lemma 14.2.7 in Chapter 14 of Daley and Vere-Jones, [2008]) that thinning 205 

of a point process with intensity (t) > 0 using process-dependent retention probability 206 

min{0(ti – ti–1),1} results in a point process with intensity 0 +(t), where the deviation 207 

term (t) decreases as  (t)/0 increases. In other words, the process-dependent thinning 208 

results in an almost-homogeneous point process, even if the process intensity is unknown. 209 

If one interprets the quantity (ti – ti–1)–1 as a single-point estimation of the process intensity 210 

(t) at time ti, then the process-dependent thinning is a natural extension to the general 211 

thinning result (S4).  212 

This theoretical background motivates us to suggest a process-dependent 213 

earthquake thinning procedure. Recall that the shape parameter of the Weibull 214 

approximation to the nearest-neighbor proximity i is close to unity. This means that the 215 

distribution of i is close to exponential, the same as the interevent time distribution in the 216 

above result. We use thinning with retention probability proportional to the observed 217 

normalized nearest-neighbor proximity i. In the Weibull model (S1), the MLE of the 218 

inverse intensity –1 based on a single observation x is given by  219 

 [x/(1+1/k)]k  x  (since k  1), 220 

where (x) is the gamma function. This allows one to expect that thinning with retention 221 

probability min{A0i,1} results in a point field with approximate intensity A0/.  222 

Figure S9 shows a Weibull approximation to the normalized nearest-neighbor 223 

proximities i after thinning of Step 4 for the global and southern California catalogs. The 224 

fit, although not perfect, is very close. This may serve as an indication that the above 225 

heuristics does work in the examined data. This is inspiring, given the enormous variety of 226 

seismic regimes, background intensities, and cluster forms that has been analyzed in each 227 

examined case. We finally mention that the fit is even closer when examining local regions 228 

that are characterized by more uniform background and cluster properties.  229 

  230 
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S2. Numerical implementation 231 

 232 

The numerical implementation of the declustering algorithm (Sect. 4.1) is described below: 233 

 234 
1. Set parameters 235 

 d (fractal dimension of epicenters/hypocenters); 236 
 w (parameter of the proximity of Eq. (1)); 237 

 0 (initial cutoff threshold); 238 

 0 (cluster threshold); 239 
M (number of reshufflings). 240 

 241 

2. Calculate the nearest-neighbor proximity i for each event in 242 
the catalog using Eqs. (1),(3). 243 
 244 

3. Select N0 events that satisfy i > 0.  245 
 246 

4. Create M randomized-reshuffled catalogs and calculate the 247 
proximity vectors ki for each event i. Specifically, for each 248 
k = 1,…,M: 249 
 250 

a. Create N0 independent and uniformly distributed time 251 
instants within the examined time interval; 252 

b. Reshuffle the locations of N0 earthquakes selected in 253 
Step 3 using a random uniform permutation of {1,…,N0}. 254 
Independently, reshuffle the magnitudes of these events.  255 

c. Find the nearest-neighbor proximity k,i from each event 256 
i in the original catalog to the events of the 257 
randomized-reshuffled catalog k comprised of the random 258 
times from step (a) and reshuffled locations and 259 
magnitudes from step (b).  260 
 261 

5. Calculate the normalized nearest-neighbor proximity i for 262 
each event in the catalog using Eq. (7). 263 
 264 

6. Calculate the retention probability Pback,i for each event i in 265 
the original catalog according to Eq. (8). 266 
 267 

7. Identify background events according to the retention 268 
probabilities of Step 6. 269 
 270 

Some practical comments are in order: 271 

1. In Step 4c, the reshuffled catalog may include the event with the same location as 272 

event i from the original catalog. This happens if event i satisfies the condition i 273 

> 0 and is used in reshuffling. Such a duplicate location should not be used in 274 

computing the proximity  k,i, as this leads to severe artifacts. Accordingly, for each 275 

event i that satisfies the condition i > 0, the proximity k,i is computed using N0 276 

– 1 events of the k-th reshuffled catalog, excluding the event with the same location 277 

as event i. 278 
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2. For several initial events in the original catalog, a reshuffled catalog k may contain 279 

no earlier events. This leads to an infinite value of k,i. Such infinite values should 280 

be excluded from calculating the average mean[log10(ki)] in Eq. (7). Formally 281 

speaking, we calculate the conditional nearest-neighbor proximity k,i given that a 282 

randomized-reshuffled catalog k has events prior to event i of the original catalog. 283 

3. The first event in the catalog has undefined i (no earlier events), and hence an 284 

undefined i. We use the convention that the first event does not satisfy the 285 

background condition (equivalently, Pback,1 = 0). 286 

4. As we mentioned in the main text, the parts 6 and 7 of the numerical algorithm are 287 

implemented via Eq. (9). 288 

5. In part 4c, it is enough to only reshuffle events’ magnitudes and use the original 289 

locations. Assigning random times to the original event locations serves as location 290 

reshuffling.  291 

6. The value of the initial cutoff threshold 0 can be selected using the bimodal 292 

distribution of the nearest-neighbor proximities i. Hence, one may first to calculate 293 

the proximities (part 2 of the numerical algorithm above), use them to select the 294 

value of 0, and then run the other parts of the numerical algorithm. 295 

 296 

S3. Sample declustered catalog 297 

 298 

We include a version of declustering for the catalog of Hauksson et al. [2012] 299 

examined in this work. The catalog is in the file 2018JB017120-01.txt and the format 300 

description is in the file 2018JB017120-02.txt.  301 

The sample declustering file refers to 123,275 events with magnitudes m  2.0 302 

during 1981 – 2018. The file reports (in column 13) the values of the logarithmic 303 

normalized proximities, log10(i), which allows one to produce declustering with different 304 

thresholds 0 and create alternative stochastic realizations of declustering for a fixed 0. In 305 

Matlab, this can be done with the following commands, which assume that the logarithmic 306 

proximities are stored in the variable logalpha and produces a vector I of background 307 

event indicators (logical 1 or 0) 308 

 309 
>> p = 10.^(logalpha-alpha0);  310 
>> I = p>rand(size(p)); 311 
 312 

These commands identify background events that are the first events in the respective 313 

clusters (see Sect. 4.1). Identification of the largest events from each cluster can be done 314 

using the information of the spanning time-oriented tree, which is also provided in the file 315 

in the form of parent links (column 16).  316 

 317 

As a specific example of declustering, the file also reports background event indicators for 318 

a single stochastic realization of the algorithm with the cluster threshold 0 = 0. Two types 319 

of the background indicators are given: the largest cluster event (column 14) and the first 320 

cluster event (column 15).  321 

 322 

The file reports the SCSN event id (cuspid) in column 8. This allows one to get additional 323 

information about the examined events reported in the original catalog. 324 
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 325 

Example 1: Line 3 refers to event with the SCSN cuspid 3301566; this event forms a 326 

cluster of a single event, and is identified as a background event. Accordingly, it has 327 

background index 1 in both column 14 (the largest cluster event indicator) and column 15 328 

(the first cluster event indicator). 329 

 330 

Example 2: Line 2 refers to event with the SCSN cuspid 3301565; this event is a first 331 

event in a larger cluster and is identified as a background event. Accordingly, it has 332 

background index 0 in column 14 (the largest cluster event indicator) and index 1 in column 333 

15 (the first cluster event indicator). The largest event in this cluster has index 59 (id 334 

3316358), that event has index 1 in column 14 and index 0 in column 15. 335 

    336 
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 337 

 338 
Figure S1: Declustering results for ETAS catalog of Gu et al. [2013]. Quality of event 339 

identification among earthquakes with magnitude equal to or above mmin.  Blue (top): 340 

proportion of the total estimated background events with respect to the true number of 341 

background events. Green (middle): proportion of correctly identified triggered events. 342 

Red (bottom): proportion of correctly identified background events. The error bars are 95% 343 

prediction intervals (not the errors of the mean). The analysis is done for 10,000 344 

independent realizations of declustering with 0 = 0.1 at every examined value of mmin. The 345 

figure summarizes the results for 210,000 declustered catalogs.  346 

 347 

 348 

 349 
Figure S2: Declustering results for ETAS catalog of Gu et al. [2013]. Proportion of 350 

correctly identified triggered (solid blue line) and background (dashed red line) events, as 351 

a function of the proximity to the true parent or nearest neighbor, respectively. The analysis 352 

refers to a single realization of declustering.  353 
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 354 

 355 

Figure S3: Declustering results in the global NCEDC catalog, m  5. Stability of 356 

declustering. The analysis is done for 10,000 independent realizations of a declustered 357 

catalog for each value of cluster threshold 0. (a) The main panel refers to 0 = –0.5. The 358 

rest of notations as in Fig. 5. The actual proportion of events that have the same estimated 359 

type in all 10,000 realizations is 9.3% for background and 11.8% for clustered events. This 360 

is hidden because of a finite bin width (0.025).  361 

362 
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 363 

 364 

Figure S4: Declustering results for Southern California, m  2.5, catalog of Hauksson et 365 

al. [2012]. Stability of declustering. The analysis is done for 10,000 independent 366 

realizations of a declustered catalog for each value of cluster threshold 0. (a) The main 367 

panel refers to 0 = 0. The rest of notations as in Fig. 5. 368 

 369 

 370 

371 
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 372 

 373 

Figure S5: Declustering results for Southern California, m  3.5, catalog of Hauksson et 374 

al. [2012]. Stability of declustering. The analysis is done for 10,000 independent 375 

realizations of a declustered catalog for each value of cluster threshold 0. (a) The main 376 

panel refers to 0 = 0.6. The rest of notations as in Fig. 5. 377 

 378 

379 
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 380 

  381 

Figure S6: Declustering results for Landers (1992, M7.3) sub-catalog of Hauksson et al. 382 

[2012]. Stability of declustering. The analysis is done for 10,000 independent realizations 383 

of a declustered catalog for each value of cluster threshold 0. (a) The main panel refers to 384 

0 = 0.2. The rest of notations as in Fig. 5. 385 

386 
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 387 

 388 

Figure S7: Declustering results for Parkfield (2004, M6) sub-catalog of Waldhouser and 389 

Schaff [2008]. Stability of declustering. The analysis is done for 10,000 independent 390 

realizations of a declustered catalog for each value of cluster threshold 0. (a) The main 391 

panel refers to 0 = 0.0. The rest of notations as in Fig. 5. 392 

 393 
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 394 
 395 

Figure S8: Bimodal distribution of the nearest-neighbor proximity. (a) Global NCEDC 396 

catalog, with m  5; (b) Southern California catalog by Hauksson et al., [2012]. (See Sects. 397 

2.1, 2.2 of the main text for complete data description).  398 

 399 

 400 

 401 
 402 

Figure S9: Weibull approximation to the normalized nearest-neighbor proximities after 403 

thinning. (a) Global NCEDC catalog, with m  5; (b) Southern California catalog by 404 

Hauksson et al., [2012]. (See Sects. 2.1, 2.2 of the main text for complete data description).  405 

 406 


