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[1] We use recent results on statistical analysis of seismicity to present a robust method for
comprehensive detection and analysis of earthquake clusters. The method is based on
nearest-neighbor distances of events in space-time-energy domain. The method is applied
to a 1981–2011 relocated seismicity catalog of southern California having 111,981 events
with magnitudes m ≥ 2 and corresponding synthetic catalogs produced by the Epidemic
Type Aftershock Sequence (ETAS) model. Analysis of the ETAS model demonstrates that
the cluster detection results are accurate and stable with respect to (1) three numerical
parameters of the method, (2) variations of the minimal reported magnitude, (3) catalog
incompleteness, and (4) location errors. Application of the method to the observed catalog
separates the 111,981 examined earthquakes into 41,393 statistically significant clusters
comprised of foreshocks, mainshocks, and aftershocks. The results reproduce the essential
known statistical properties of earthquake clusters, which provide overall support for the
proposed technique. In addition, systematic analysis with our method allows us to detect
several new features of seismicity that include (1) existence of a significant population of
single-event clusters, (2) existence of foreshock activity in natural seismicity that exceeds
expectation based on the ETAS model, and (3) dependence of all cluster properties, except
area, on the magnitude difference of events from mainshocks but not on their absolute
values. The classification of detected clusters into several major types, generally
corresponding to singles, burst-like and swarm-like sequences, and correlations between
different cluster types and geographic locations is addressed in a companion paper.

Citation: Zaliapin, I., and Y. Ben-Zion (2013), Earthquake clusters in southern California I: Identification and stability,
J. Geophys. Res. Solid Earth, 118, 2847–2864, doi:10.1002/jgrb.50179.

1. Introduction

[2] Earthquake clustering is an essential aspect of seismicity
with signatures in space, time, and size (e.g., magnitude, po-
tency/moment, and energy) domains that provide key informa-
tion on earthquake dynamics. Clustering is the most prominent
form of the existing variety of structures and patterns of seis-
micity, understood in the broadest sense as various deviations
from a time-Stationary space-Inhomogeneous marked Poisson
(SIP) process. Clustering in space is exemplified by the con-
centration of earthquakes along the boundaries of major
tectonic plates and regional fault networks [e.g., Scholz,
2002; Utsu, 2002]. Clustering in time is best seen as a signifi-
cant increase of seismic activity immediately after large

earthquakes leading to aftershock sequences [e.g., Omori,
1894; Utsu, 1961; Utsu et al., 1995; Kisslinger, 1996]. Earth-
quake swarms, foreshocks, bursts, gaps, and switching of seis-
mic activity among spatio-temporal domains are other terms
used to denote different types of seismic clustering [e.g., Rich-
ter, 1958; Jones and Molnar, 1979; Romanowicz, 1993; Utsu,
2002; Felzer and Brodsky, 2006; Vidale et al., 2006; Vidale
and Shearer, 2006; Ben-Zion, 2008; Shearer, 2012].
[3] Despite the overall agreement about the existence of

multiple types of repeatedly observed seismic clusters,
reflected by a well-developed cluster terminology, a formal
definition of seismic clusters is lacking. This limits the abil-
ity of performing systematic cluster analysis. Even the most
prominent type of earthquake clusters—aftershocks—does
not have a commonly accepted definition. Accordingly, the
existing cluster studies rely on various ad hoc assumptions,
which are well suited for addressing particular focused ques-
tions yet typically insufficient for general use. For the same
reason, the majority of aftershock studies are associated with
the largest earthquakes in a region. These events are charac-
terized by extremely high intensity of aftershock series,
at least in the mainshock vicinity, which allows one to
accurately identify most aftershocks by a simple window
approach and ensures that alternative methods lead to
similar results. The behavior of aftershock sequences of
small-to-medium magnitude events is largely unsettled.
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[4] This study takes advantage of recent results on statisti-
cal cluster identification [Zaliapin et al., 2008; Zaliapin and
Ben-Zion, 2011], and recent empirical evidence [e.g., Vidale
et al., 2006; Vidale and Shearer, 2006; Enescu et al., 2009;
Holtkamp et al., 2011; Shearer, 2012], to develop a comprehen-
sive approach toward objective and robust analysis of seismic
clusters. This paper is the first in a series having the following
specific goals: (1) identify statistically significant earthquake
clusters in southern California, (2) classify the detected clusters
into several main types according to their statistical properties,
and (3) relate the detected cluster types to key governing prop-
erties of the crust. The present paper focuses on the first goal;
the other two will be addressed in follow-up papers.
[5] The employed data and basic methods of catalog analy-

sis are outlined in section 2. The cluster detection that forms
the core of the study follows from results of Zaliapin et al.
[2008] and is described in section 3. The proposed method
is based on a generally observed bimodal distribution of
nearest-neighbor earthquake distances in a combined space-
time-magnitude domain (section 3; sections A and B in the
supporting information). The nearest-neighbor distances
quantify the deviations of observed seismicity from a SIP
process. We show in supporting information section B that
the observed bimodal distribution cannot result from marginal
spatial or temporal clustering of earthquakes and hence cannot
be attributed, for instance, to the complexity of fault networks.
Instead, it is fundamentally due to dependent space-time
seismicity structures associated primarily with foreshock-
mainshock-aftershock sequences. The observed bimodal
distribution of earthquake distances provides a natural tool
for partitioning an examined earthquake catalog into separate
individual clusters: events within a cluster are abnormally
close to their nearest-neighbors, while events from distinct
clusters are relatively far from each other.
[6] The clusters are naturally divided into singles that

contain just one event and families having multiple events

that are subclassified into foreshocks, mainshocks, and
aftershocks (section 3.5). The suggested classification is
consistent overall with traditional expert definition of differ-
ent types of earthquakes (mainshocks, foreshocks, and after-
shocks). Our methodology, however, is based solely on
statistical properties of the data and can be used to analyze
seismicity objectively and systematically in different geo-
graphic regions, time intervals, and magnitude ranges.
[7] The employed cluster technique is characterized by (1)

soft parameterization that uses only three easily estimated
parameters (the b-value of the magnitude distribution, the
spatial dimension of epicenters, and the threshold that sepa-
rates “very close” from other distances); (2) the ability to
uniformly analyze clusters associated with mainshocks of
greatly different magnitude; (3) demonstrated high stability
of the cluster detection with respect to the employed param-
eters, minimal reported magnitude, catalog incompleteness,
and location errors; and (4) the absence of underlying
assumptions or governing models for the expected earth-
quake cluster structure. The combination of these properties
distinguishes our technique from other existing algorithms
[e.g., Gardner and Knopoff, 1974; Reasenberg, 1985;
Molchan and Dmitrieva, 1992; Zhuang et al., 2002; Dzwinel
et al., 2005; Marsan and Lengline, 2008]. The proposed
algorithm is objective, since it is based on a general intrinsic
property of natural seismicity (bimodal earthquake distance
distribution) rather than on any ad hoc division criteria, and
it provides a robust tool for systematic analysis of earthquake
clusters that span wide regions of space, time and sizes.
[8] Section 4 presents analysis of various statistical prop-

erties of the detected clusters. This analysis has two goals.
First, it confirms that our technique reproduces the essential
known properties of seismic clusters, which is important for
the validation of the proposed approach. Second, it reveals
several interesting new or not well-documented features of
seismic clusters. These include the existence of a prominent
population of single-event clusters (given the employed cat-
alog resolution); similarity of the distributions of magnitude
differences between the mainshock and largest aftershock
and foreshock (resulting in the Båth law for both aftershocks
and foreshocks); closer overall proximity of foreshock mag-
nitudes to that of mainshocks compared to the aftershock
magnitudes; and dependence of the cluster structure on the
difference between magnitudes of mainshock and cluster
events, rather than on their absolute magnitudes. A compan-
ion paper [Zaliapin and Ben-Zion, 2013] uses the developed
approach to demonstrate the existence of several types of
seismicity clusters in southern California that are characterized
by distinct topological properties and geographic location and,
therefore, likely associated with different failure processes.

2. Data and Basic Methods

2.1. Data

[9] We work with the relocated southern California earth-
quake catalog of Hauksson et al. [2012], available via the
SCEC data center (http://www.data.scec.org/research-tools/
downloads.html). Figure 1 shows the epicenters of 111,981
earthquakes with magnitude m ≥mc = 2 used in this study.
The time-latitude map of seismicity with m ≥ 3 in Figure 2 il-
lustrates visually various changes of seismic intensity, most
clearly related to aftershock sequences of large earthquakes.
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Figure 1. Map of earthquake epicenters, m ≥ 2, from the
relocated catalog of Hauksson et al. [2012]. Circle size is pro-
portional to magnitude. Major faults are shown by gray lines.
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2.2. Completeness

[10] The employedmagnitude thresholdmc = 2 is lower than
the completeness magnitude for southern California, which is
estimated to be above 3.0 [Felzer, 2008; Schorlemmer and
Woessner, 2008]. However, we demonstrate in sections D
and E in the supporting information material that the cluster
structure of the events is insensitive to the catalog incomplete-
ness as well as to the minimal reported magnitude. This sup-
ports the assumption that the recovered cluster structure is
close to the one that would be observed in a complete catalog.
The results for mc = 3 (not shown) are qualitatively similar to
the ones reported in this study, yet the number and size of the
clusters is insufficient for presenting visually clear results.

2.3. Δ-analysis
[11] Any aftershock analysis is intrinsically affected by

the existence of the catalog lower cutoff magnitude mc. For
instance, if we analyze earthquakes with magnitudes m ≥
mc = 2, then an earthquake of magnitude m = 2 cannot have
aftershocks of a smaller magnitude, while an m = 6 event
may have aftershocks with magnitudes 2 ≤m ≤ 6. To equal-
ize the magnitude ranges for potential fore/aftershocks of
mainshocks with different magnitudes, we often perform a
Δ-analysis that (1) only considers mainshocks with magni-
tude m ≥mc + Δ = 4 and (2) only considers fore/aftershocks
with magnitude within Δ = 2 units below that of the
mainshock. The fore/aftershocks detected by this analysis

are called Δ-fore/aftershocks. The conventional analysis that
considers all events is referred to as regular analysis.

3. Earthquake Clustering: Nearest-Neighbor
Approach

[12] We detect earthquake clusters based on analysis of
nearest-neighbors in a multidimensional domain that
includes the location, time, and size of earthquakes. It is
shown below (section 3.3 and Figure 4) that the nearest-
neighbor distances of recorded earthquakes in this combined
domain are separated clearly into two subpopulations. The
first population is comprised of clustered events that occur
unusually close (in a sense to be rigorously defined) in time
and space to their nearest neighbors. The second population
is comprised of background events that happen farther away
from their nearest neighbors; the spatio-temporal distribu-
tion of background events is reminiscent of that for a SIP
process. We note that the term background is not equivalent
to homogeneous. In fact, a rigorous analysis [e.g., Luen and
Stark, 2012] can reject the hypothesis that the background
events are a realization of a SIP process. Nevertheless, it will
be demonstrated below (Figures 3, 4, and 9) that the devia-
tions from a SIP realization in the background subpopulation
are orders of magnitude less than in the clustered population.
This motivates us to focus on the clustered population and
consider its objective statistical identification.
[13] We emphasize that the problem considered in this

study is different from catalog declustering, which is formu-
lated as removing some events from a catalog in order to
obtain a homogeneous remaining point field. We focus,
instead, on identifying individual statistically significant
clusters and analyzing (1) the properties of the clusters and
(2) the properties of the point field represented by the single
maximal event of each cluster, whether or not this field is
Poissonian. The history of seismicity cluster analysis and
the existing declustering approaches [e.g., Gardner and
Knopoff, 1974; Reasenberg, 1985; Molchan and Dmitrieva,
1992; Dzwinel et al., 2005; Marsan and Lengline, 2008;
Zhuang et al., 2002] suggest that the two problems are
related. A traditional approach to the declustering problem,
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Figure 2. Epicenters of the earthquakes with m ≥ 3 as a
function of time and latitude.
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Figure 3. Cluster analysis for a time-stationary space-homogeneous Poisson process with exponential
magnitudes; the number of events is 12,105, the same as the number of m ≥ 3 events in the Hauksson
et al. [2012] catalog. (a) Joint distribution of the rescaled time and distance components (T,R) of the
nearest-neighbor distance �. The distribution has single mode located along the line log R+ log T= const.
(b) Histogram of the nearest-neighbor distances �ij; the distribution is clearly unimodal. (c) Empirical cdf
(circles) of the nearest-neighbor distance �ij and the Weibull cdf (black line), which provides a very close
approximation to the data.
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pioneered byGardner and Knopoff [1974], is to detect and re-
move “aftershocks” and to test the remaining field, mostly
comprised of mainshocks, for stationarity and homogeneity.
These authors have hypothesized in their classical paper that
the resulting field is a realization of a SIP process. This gave
a strong impetus to a tradition in statistical seismology to test
declustering algorithms against a stationary Poisson outcome.
A recent study by Luen and Stark [2012] demonstrates, how-
ever, that the SIP hypothesis is rejected in analysis of currently
available catalogs and declustering methods in southern
California. This conclusion is not surprising if one takes into
account numerous mechanisms leading to time-dependent
evolution of seismicity not related to aftershock clustering.
These include seismic migration, swarms, regional changes
of seismic intensity, switching of seismic activity between
different faults, and technical problems with routine recording
of events, in particular in the immediate vicinity of a large
event. This provides additional motivation for the approach
used in this study, whose primary focus is on the properties
of clusters as opposed to that of a declustered catalog.

3.1. Distance Between Earthquakes

[14] Consider an earthquake catalog where each event i is
characterized by occurrence time ti, hypocenter (fi, li, di),
and magnitude mi. Our initial goal is to identify for each
earthquake j its possible parent, which is an earlier earth-
quake i that is the closest, in some sense, to j among all ear-
lier events. This motivates us to consider a distance that is
asymmetric in time. Following Baiesi and Paczuski [2004],
the distance between earthquakes i and j is defined as

�ij ¼ tij rij
� �df 10�bmi ; tij > 0;

1; tij ≤ 0:

�
(1)

[15] Here tij= tj – ti is the inter-occurrence time in years,
which is positive if earthquake i happened before event j
and negative otherwise, rij ≥ 0 is the spatial distance between
the earthquake hypocenters in kilometers, and df is the
(possibly fractal) dimension of the earthquake hypocenter
distribution. In the main analysis of this paper, we compute
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Figure 4. Distribution of the nearest-neighbor distance � in southern California using the relocated
catalog of Hauksson et al. [2012]. (a, b) The joint distribution of the rescaled time and space components
(T,R). (c, d) Histogram of the nearest-neighbor distance �; the values are normalized to sum up to unity.
Different panels refer to different values of the magnitude cutoff mc and, accordingly, to different number
n of examined events: (a, c) mc = 2, n = 111,981; (b, d) mc = 3, n = 12,105. The bimodal distribution is
clearly seen in each panel. Notably, the location of the upper mode, as well as the vertical location of
the lower mode, is independent of the magnitude cutoff. The line log R + log T= -5 that separates the
two modes is shown in white in Figures 4a and 4b (cf. Figure 3).
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the distance �ij with parameters b = 1, df= 1.6. The depth of
the earthquakes is ignored, and rij is computed as the surface
distance between the event epicenters.
[16] It will be convenient to represent the scalar distance �

in terms of its space and time components normalized by the
magnitude of the parent event i [Zaliapin et al., 2008]:

Tij ¼ tij10
�qbmi ;Rij ¼ rij

� �df 10� 1�qð Þbmi : (2)

[17] It is readily seen that �ij= TijRij or, equivalently,
log 10�ij= log 10Tij+ log 10Rij. In this work, we always use
q = 0.5. Figure A1 (supporting information section A)
illustrates the connection between the normalized time T
and time in years for events of different magnitudes mi.
[18] The nearest-neighbor distance (NND) for a given event

j is the minimal distance among �ijwhere i goes over all earlier
events in the catalog. The event i that corresponds to the
nearest-neighbor distance is called the nearest-neighbor, or
parent, of event j. We use for the NND the same notation �ij
as for the general distance in equation (1), which should create
no confusion.
[19] Our cluster analysis is based on significant deviations

of the observed NND � from the values expected in the
absence of clustering. The next section reviews the properties
of the distance � and its 2-D expansion (T,R) for a stationary
homogeneous Poisson point process that by construction has
no clustering.

3.2. Homogeneous Poisson Process

[20] Consider a marked Poisson point process that is homo-
geneous in df-dimensional space, stationary in time, and has
magnitudes (marks) that follow the Gutenberg-Richter distri-
bution; we will refer to this process as a Stationary Homoge-
neous Poisson (SHP) process. Zaliapin et al. [2008] and
Hicks [2011] demonstrated that the NND �ij in SHP can be
closely approximated by the Weibull distribution. The tradi-
tional NND for a Poisson point field in a Euclidean space also
has the Weibull distribution [Feller, 1970]. This relates our
cluster analysis in space-time-magnitude domain and classical
results on clustering in multidimensional spaces. Zaliapin
et al. [2008] also demonstrated that the joint 2-D distribution
of (T, R) in a SHP process is unimodal and is concentrated
along the line log10 T+ log10 R= const.
[21] Figure 3 shows results for a SHP process with 12,105

events, which is the number of m≥ 3 events in the relocated
catalog of Hauksson et al. [2012]. Figure 3a displays the joint
distribution of (T, R) estimated using a Gaussian kernel
smoothing; the distribution is clearly unimodal. The white line
corresponds to log10 R+ log10 T= -5 and is shown for visual
comparison of these synthetic results with later results for
southern California. Figure 3b shows the histogram of
the NND on a logarithmic scale; it further emphasizes the
unimodal shape of the distribution. Figure 3c juxtaposes the
empirical cumulative distribution function (cdf) of the NND
� and the theoretical cdf for the Weibull distribution, which
provides a very close approximation for the observations
[Zaliapin et al., 2008; Hicks, 2011].

3.3. Observed Seismicity

[22] In contrast to the above results for a SHP process,
analysis of the observed seismicity reveals a prominently

bimodal distribution of � and of the joint distribution of
(T, R), with an additional mode located closer to the origin.
Figure 4 shows the distribution of the NND � for two differ-
ent cutoff magnitudes in southern California. The first strik-
ing observation is the existence of two modes: One is
extended along and above the white diagonal line in
Figures 4a and 4b; this mode is reminiscent of the distribu-
tion for a SHP process shown in Figure 3. We refer to this
mode as background. The other mode is located closer to
the origin and has horizontally elongated shape in the 2-D
plot. We call this mode clustered. We note that the location
of the background mode is independent of the magnitude
cutoff of the analysis; the vertical (space) location of the
cluster mode is also independent of the magnitude cutoff.
[23] The bimodal distribution of the NND is a general

feature of observed seismicity. Hicks [2011] used the NEIC
catalog 1973–2011, m ≥ 4, and found similar bimodal distri-
bution for the worldwide seismicity, as well as the regional
seismicity of Japan, New Zealand, and Africa. Bautista
[2011] demonstrated a bimodal distribution for seismicity
in Nevada, using the catalog produced by the Nevada
Seismological Laboratory.
[24] Supporting information section B shows that the

reported bimodal distribution cannot be explained by spatial
or temporal marginal distributions of the observed earthquakes;
instead, it is associated with dependent spatio-temporal struc-
tures. The existence of the cluster mode is ultimately caused
by groups of earthquakes that happen within highly localized
regions in both space and time. Such groups mainly correspond
to foreshock-mainshock-aftershock sequences or swarms. In
the next section we use the bimodality of the (T,R) distribution
to identify individual space-time clusters of seismicity.

3.4. Spanning Network, Forest of Earthquakes

[25] By connecting each earthquake j in the catalog to its
nearest neighbor (parent) i according to the NND �, we form
a single cluster that contains all examined events. In the
graph-theoretical language, the nearest-neighbor links form
a spanning network. The spanning network for the nearest-
neighbor analysis of earthquakes with m ≥ 4 in southern
California is shown in Figure 5a. Statistical properties of
the spanning network for California seismicity according to
the ANSS catalog were studied by Baiesi and Paczuski
[2004]. From a topological point of view, the spanning net-
work is a tree, whichmeans that it does not have loops. The tree
structure of the nearest-neighbor spanning network can be not
very intuitive, since this property does not hold in Euclidean
spaces, so we prove it in supporting information section C.
[26] Each link in the spanning tree is assigned a strength

inversely proportional to the respective NND �. This allows
separating all the links in the spanning tree into weak and
strong, in accordance with the bimodal distribution of �.
Specifically, weak links (large distances) are defined by the
condition � ≥ �0; they correspond (Figure 4) to the back-
ground part of the bimodal distribution of (T,R). Strong links
(short distances) are defined by the complementary condi-
tion � <�0; they correspond to the cluster part of the
bimodal distribution of (T,R). A visual inspection of Figure 4
suggests �0 = 10�5 as a reasonable separation threshold.
Hicks [2011] performed a formal analysis to establish the
best boundary between the two modes, considering a Gauss-
ian mixture model with the background and cluster modes.
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The model was estimated using the Expectation Maximiza-
tion approach [Hastie et al., 2001]. The analysis was
performed in 1-D for values of log10 � and in 2-D for the
joint distribution of (log10 T, log10 R). Such a formal analy-
sis suggests also that �0 � 10�5 .
[27] We now remove the weak links from the spanning tree

and keep only the strong links. This results in a spanning forest
(Figure 5b), which is a collection of distinct trees that span all
events in the catalog. The forest contains many single-event
trees, which we call singles and show by open circles. The
other events are connected in multievent clusters, which we
call families. By construction, each family is comprised of
highly coupled events that are connected to their parents by
strong links. There are 1146 earthquakes with m≥ 4 in the
examined catalog. Of these, 685 (60%) have strong links to
parents and 461 (40%) have weak links. There are 373
(33%) singles; the other 773 (67%) events form 89 families.

The size of the families ranges from 2 to 166 events. Figure 5b,
however, creates a visual impression that most of the events
are singles (empty circles), while the family events (filled cir-
cles) comprise a small fraction of the catalog. This impression
is due to the fact that the more numerous family events are
highly clustered in space and time, while the less numerous
singles are distributed more uniformly. As an illustration,
Figure 5c zooms on an area around the M7.2 El-Mayor–
Cucapah earthquake of 4 April 2010. The aftershock sequence
of this earthquake contains numerous events highly clustered
in space and time; they all belong to a single family.
[28] Next, we focus on the internal structure of the clusters

in the spanning nearest-neighbor forest.

3.5. Mainshocks, Aftershocks, Foreshocks

[29] We introduce the following terminology for the
events within a family (Figure 6). The earthquake with the
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Figure 5. Nearest-neighbor analysis of earthquakes withm≥ 4 from the relocated catalog ofHauksson et al.
[2012]. The nearest-neighbor links are shown by grey lines. (a) Spanning tree of nearest-neighbors.
(b) Nearest-neighbor forest obtained by removing the weak links from the spanning tree. Open circles
represent single events, filled circles represent clusters. (c) Sample area around the El Mayor – Cucapah
M7.2 earthquake of 10 April 2010 (white star).
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largest magnitude in a family is called mainshock. If there
are several earthquakes with the largest magnitude within a
family, the first one is considered to be the mainshock;
hence, each family has a single mainshock. All events in a
family that occurred after the mainshock are called after-
shocks. All events that occurred prior to the mainshock are
called foreshocks. This terminology closely resembles the
one commonly used in the literature on earthquake cluster
analysis. Altogether, we have (Figure 6) two types of clus-
ters—singles and families—and three types of events within
families—mainshocks, aftershocks, and foreshocks. The
event classification depends on the catalog magnitude cutoff.
For instance, with a lower cutoff some singles may become
mainshocks (after being connected to possible foreshocks
and aftershocks), while with a higher cutoff, some
mainshocks may become singles. Other changes of event
types are also possible.
[30] Table 1 summarizes the individual event identification

in the nearest-neighbor analysis of earthquakes with magni-
tude m≥ 2 in southern California. The proportion of events
of different type is very stable for magnitudes below 5, with
about 37% of mainshocks and singles, 56% aftershocks, and
7% foreshocks. These proportions change for larger events,
giving significant preference to the mainshocks, which seems
very intuitive (see also section 4.1). According to a Fisher test
[Agresti, 2002], this proportion change can hardly be attrib-
uted (not shown) to the decrease of the event number within
the large magnitude ranges and hence represents an actual ef-
fect. Table 2 summarizes the event classification inΔ-analysis.
Figure 7 shows the spatial distribution of the mainshocks and
singles in Δ-analysis.

[31] Figure 8 shows events of different types in time-
latitude coordinates. The figure demonstrates that the
nearest-neighbor analysis detects the most obvious clusters,
mostly related to aftershock sequences of large earthquakes.
At the same time, there are still some clear variations in the
mainshock intensity, like the one during 1987–-1990 around
latitude 32 in Figure 8a. However, the spatio-temporal scales
of the groups of mainshocks and singles are much larger
than that of the clusters identified by the nearest-neighbor
analysis. To illustrate this, we perform the nearest-neighbor
analysis only for the mainshocks and singles with different
magnitude thresholds (Figure 9). The joint distribution of
(T,R) in this case is clearly unimodal, with a single mode lo-
cated above the line log10 T+ log10 R=�5, which separates
the background and cluster populations in the analysis of the
entire catalog (Figure 4). The cluster mode is absent in the
analysis of mainshocks and singles, indicating that the es-
sential clustering has been already successfully identified
and removed. The single mode of (T,R) is largely spread
and does not look like the ellipsoid mode of a Poisson pro-
cess shown in Figure 3a; this indicates that the mainshock/
singles field is not Poissonian. This statement is further con-
firmed by the fact that the NND do not obey the Weibull dis-
tribution (not shown). At the same time, the single mode
looks similar to the background mode of the original catalog
(Figures 4a and 4b); this suggests that the cluster identifica-
tion procedure does not distort the nonhomogeneous and
possibly nonstationary background events. Identifying and
possibly removing the weak remaining clusters of
mainshocks and singles is a separate problem, which also
can be approached by the nearest-neighbor methodology.

Table 1. Statistics of Singles, Mainshocks, Aftershocks, and Foreshocks in the Nearest-Neighbor Analysis of Events With m ≥ 2

Magnitude
Range

Singles

Families

Mainshocks (= No. of Families) Aftershocks Foreshocks

No. % No. % No. % No. %

All events: m ≥ 2 34,836 31 6,557 6 62,441 56 8,147 7
2 ≤m< 3 32,376 32 4,392 4 55,682 56 7,426 7
3 ≤m< 4 2,379 22 1,794 16 6,115 56 671 6
4 ≤m< 5 80 8 312 30 596 58 47 4
5 ≤m< 6 1 1 48 49 47 48 2 2
m ≥ 6 0 0 11 85 1 8 1 8

Figure 6. Event classification: an illustration. The figure illustrates the definition of single (empty circle)
and family, which consists of the mainshock (dark circle), aftershocks (dark squares), and foreshocks
(empty squares). The same symbols and color code is used below in Figures 7 and 8.
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However, the clustering of mainshocks and singles lacks the
bimodality of the original catalog, so analysis of such data
requires additional ad-hoc rules. The present study does
not address this problem.

3.6. Quality and Stability of Cluster Identification

[32] The proposed cluster detection technique is based on
the earthquake distance of equation (1) and the cluster
threshold �0. We note that the parameter q of equation (2)
is only used for visual purposes (to define and plot rescaled
time T and space R) and is not involved in the cluster iden-
tification. The algorithm is completely parameterized by
the triplet (b,df,�0) whose values are estimated from the
observations, so it does not involves any ad-hoc choices or
tuning parameters. Nevertheless, there exist statistical vari-
ability in the estimation of each parameter—Marzocchi
and Sandri [2003] give a review of b-value estimation with
numerous references; the results on estimating fractal distri-
bution of epicenters are reviewed by Harte [1998], Kagan
[2007], and Molchan and Kronrod [2009]; the estimation
of the threshold �0 is discussed by Hicks [2011]. The results
of the cluster detection might be also affected by the catalog
completeness magnitude and earthquake location errors.
[33] To test the performance and stability of the proposed

cluster identification, we apply it in supporting information
section D to catalogs generated by the ETAS model [Ogata,
1998]. This analysis has three goals. First, it demonstrates
that the proposed technique is able to correctly identify
spatio-temporal clusters in a model with known underlying
cluster structure, and to perform well for a wide range of
model parameters. Second, it demonstrates stability of the
cluster identification with respect to the algorithm parameters,
catalog magnitude completeness threshold, and earthquake
location errors. Third, it illustrates some statistical effects
related to the adopted conditional definition of event types:
mainshocks, aftershocks, and foreshocks. Supporting informa-
tion section E demonstrates the stability of our cluster tech-
nique with respect to the above potential sources of error in
the observed catalog of southern California seismicity.
[34] In this study, we consider a version of the ETAS

model with isotropic spatial kernel and homogeneous spatial
background distribution, which is commonly used in analy-
sis of observed seismicity [e.g., Veen and Schoenberg, 2008;
Wang et al., 2010; Chu et al., 2011]. Although the isotropy
and homogeneity assumptions are violated in the observed
seismicity, such model captures the essential aspects of
self-excited seismicity and can serve to illuminate basic
similarities and differences between the observed and syn-
thetic clusters. We expect that the main conclusions of this

work will remain valid for a spatially inhomogeneous/aniso-
tropic version of ETAS. We also notice that the examined
ETAS model does not reproduce possible incompleteness
of the observed catalogs immediately after large events
(so-called short-term aftershock incompleteness).
[35] The results of the quality and stability analyses sug-

gest that (1) the earthquake catalog of southern California
has a cluster structure reminiscent in general of that gener-
ated by the ETAS model; additional details described in sec-
tion 4, (2) the cluster structure can be robustly recovered by
the proposed technique, and (3) the cluster structure is stable
with respect to various choices and numerical parameters of
the proposed algorithm.

4. Statistics of Detected Clusters

[36] In this section, we examine various statistics of the
detected earthquake clusters. The analysis has two goals: (1)
to reproduce the known statistical features of aftershock/fore-
shock series in order to validate the proposed cluster technique
and (2) to reveal new properties of earthquake clusters.

4.1. Magnitude Distribution

[37] Figure 10 illustrates the magnitude distribution of
mainshocks/singles, aftershocks, and foreshocks. Figure 10a

Table 2. Statistics of Singles, Mainshocks, Aftershocks, and Foreshocks in the Nearest-Neighbor Δ-Analysis of Events With m ≥ 2

Magnitude
Range

Singles

Families

Mainshocks (= No. of Families) Aftershocks Foreshocks

No. % No. % No. % No. %

All events: m ≥ 2 102 2 350 8 3260 72 807 18
2 ≤m< 3 - - - - 2029 79 532 21
3 ≤m< 4 - - - - 992 81 229 19
4 ≤m< 5 96 15 296 47 199 31 43 7
5 ≤m< 6 6 7 43 48 39 43 2 2
m ≥ 6 0 0 11 85 1 7 1 7

−122 −121 −120 −119 −118 −117 −116 −115 −114 −113
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Figure 7. Spatial distribution of mainshocks and singles
with magnitudes m ≥ 4 in the nearest-neighbor Δ-analysis
of events with m ≥ 2. Filled circles correspond to family
mainshocks, open circles to singles; circle size corresponds
to event magnitude, as indicated in the legend. There are
no singles with magnitude above 6.
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Figure 9. The joint distribution of rescaled time and space components (T,R) of the nearest-neighbor
distance � for the nearest-neighbor analysis of only mainshocks and singles. Different panels refer to different
values of the magnitude cutoff mc and, accordingly, to different number n of examined events (a) mc = 3,
n=4,569; (b) mc = 4, n=441; and (c) mc = 5, n=59; individual values of (T,R) are shown by circles in this
panel. The distribution is unimodal and located above the line log R+ log T= -5 that separates the two modes
in the analysis of the entire catalog (Figure 4).
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Figure 8. Event classification in the nearest-neighbor analysis of earthquakes with m ≥ 2. Different
panels show events of different magnitudes (while the analysis is always done for m ≥ 2), as indicated
in panel titles. Different symbols correspond to different event types, as described in the legend.
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shows the proportion 1�F(m) of earthquakes with magni-
tude above or equal to m, where F(m) denotes the empirical
cumulative distribution function of magnitudes. Figure 10b
shows the cumulative proportion normalized by the magni-
tude, [1�F(m)]�10m. This transformation is convenient to
emphasize changes of the exponential index: It converts a
pure exponential distribution F(m) = 1�10�bm with b= 1 to
a horizontal line; a downward slope indicates an exponential
distribution with index b> 1, while an upward slope indi-
cates an exponential distribution with index b< 1. The
following observations are noteworthy. (1) There exists a
downward bend in all three distributions within the magni-
tude range 2 ≤m ≤ 2.5; the bend reflects the catalog incom-
pleteness. (2) All three distributions are approximately
exponential (i.e., are closely approximated by a straight line
in the chosen coordinates) within the range 2.5 ≤m ≤ 4.5
with index b � 1 for mainshocks/singles and aftershocks
and a larger index b> 1 for foreshocks. (3) There is a prom-
inent upward (downward) bend in the mainshock/singles
(aftershock) distribution at m = 4.5; there is also a less prom-
inent downward bend for foreshocks at the same point.
[38] Table 3 reports the estimation of the b-value for

events of different types, using events with magnitude
m ≥ 3.0 to eliminate the effects of catalog incompleteness
reported above. The estimations are done with the method
of Tinti and Mulargia [1987] that takes into account the dis-
creteness of reported magnitudes; the magnitude step in the
analyzed catalog is d¼0.01. We refer to Marzocchi and
Sandri [2003] for comprehensive discussion and tests of this
method. The estimations confirm the visual impression from
the cumulative plots of Figure 10: The b-values for
mainshocks/singles and aftershocks are the same within the
intermediate magnitude range and are significantly lower
than the b-value for foreshocks. While the estimated b-
values and respective confidence intervals would depend
on the employed estimation method (different methods
may lead to deviations of estimated values within� 0.03),
this qualitative conclusion remains the same. We also notice
that despite the fact that the observed deviations of the magni-
tude distribution from a pure exponential law at large values
do affect slightly the estimated b-values, they are not large
enough to mask the special behavior of foreshocks.

[39] The location of the bend at m = 4.5 is consistent with
results of Knopoff [2000], who reported an upward bend for
the mainshocks in southern California at m = 4.7 using a
different method for mainshock identification. This effect
is also observed in the ETAS model (supporting information
section D and Figure D9) and hence is due at least in part to
the finite spatio-temporal domain of analysis and conditional
event type definition: larger events have a slightly higher
chance of becoming mainshocks than smaller events. The
upward deviation in the number of mainshock/singles from
the pure exponential law is also an expected outcome of
the growth of stress concentration in elastic solid with the
rupture size [Ben-Zion and Rice, 1993; Ben-Zion, 1996].
When ruptures reach a critical size Rc for which the stress
transfer to the edge is comparable to a typical stress drop,
they can generate at the propagating front sufficient stress
to continue to propagate through areas that just sustained a
stress drop. Such ruptures can become “runaway events”
that continue to grow (statistically) to a size limited by
strong heterogeneities or the overall fault dimensions [Ben-
Zion, 2008, Figure 13]. The actual value of Rc depends on
the level of heterogeneities and average stress drops. The re-
sults of Knopoff [2000] and those shown in Figure 10 might
indicate that m � 4.5 is sufficiently large to produce statisti-
cally runway events in southern California. The enhance-
ment in the number of mainshocks for events larger than
m � 4.5 leads to corresponding reduction in the number of
other event types (foreshocks and aftershocks), as shown
in Table 1. The precise origin of the observed upward devi-
ation in the mainshock magnitude distribution remains
unclear and may be due to either physical processes or statis-
tical artifacts, or a mixture of the two.

Table 3. Estimated b-Value for Events of Different Type for
m ≥ 3, Using Estimator of Tinti and Mulargia [1987]

b-Value 95% CI n

All 0.992 0.974 – 1.010 12,105
Mainshocks 1.003 0.974 – 1.032 4,625
Aftershocks 1.004 0.980 – 1.028 6,759
Foreshocks 1.129 1.047 – 1.211 721
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Figure 10. Magnitude distribution for different event types. (a) Proportion 1-F(m) of events with
magnitude equal to or above m. (b) Normalized proportion [1-F(m)]�10m of events with magnitude equal
or above m. Different event types are shown by different line styles, as indicated in the legend.

ZALIAPIN AND BEN-ZION: IDENTIFICATION OF EARTHQUAKE CLUSTERS

2856



[40] Importantly, there exist two observations that are not
reproduced by the ETAS catalogs considered in this study
(supporting information section D, Figure D9, and Table
D3): (1) comparable b-values for aftershocks and mainshocks
within intermediate magnitude range and (2) higher b-value
for foreshocks than for aftershocks and mainshocks. This sug-
gests that the behavior of natural seismicity clusters, and fore-
shocks in particular, cannot be completely explained within
the ETAS framework; or at least by its spatially homogeneous
version used here. Evidently, there are features that are not due
to the conditional definition of events; these features might re-
flect important physical processes within earthquake clusters.

4.2. Number of Offspring

[41] Figure 11a shows the estimated number Noff of direct
offspring for each event in the observed catalog (light dots)
and the averaged offspring number within nonoverlapping
magnitude intervals of length 0.1 (dark circles). The off-
spring number scales with the event magnitude as

Noff / 10cm; c ¼ 0:93� 0:06:

[42] Here the estimation is done within the range 4 ≤ m ≤ 6,
and the margins of error correspond to a 95% CI. The

distribution of Noff for fixed m can be closely approximated
by the negative binomial distribution, and it deviates signif-
icantly from a Poisson distribution. This is consistent with
results of Kagan [2010] and is confirmed by the chi-
square goodness-of-fit test for 2 ≤ m ≤ 6 with magnitude
step 0.1 (not shown). The analysis for m=4.5 is illustrated
in Figure 12a, which shows the empirical cumulative distri-
bution of the offspring number (circles) and its best maxi-
mum likelihood approximations by the negative binomial
(solid line) and Poisson (dashed line) distributions. Clearly,
the negative binomial model provides a very close fit, while
the Poisson model is not applicable. Similar results are seen
at all other magnitudes. For comparison, Figure 12b repeats
the same analysis in an ETAS catalog with 146,432 events
described in supporting information section D.5. Although
the actual offspring numbers in the ETAS model have a
Poisson distribution, the estimated numbers of direct off-
spring have larger variance and are better approximated
by a negative binomial distribution; this issue is further
discussed in supporting information section D.5. An impor-
tant observation is that the variance of the offspring distri-
bution in the observed catalog seems to be much larger
than that in the considered ETAS model. This observation
is further confirmed in Figure 11b where we show the
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Figure 12. Distribution of the offspring number Noff in the observed catalog (a) and ETAS model (b).
The empirical cumulative distribution function (filled circles) is juxtaposed with the best maximum like-
lihood Poisson (dashed line) and negative binomial (solid line) models.
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estimated mean and variance of the offspring number Noff

for the observed and ETAS catalogs. We note the following
features: (1) The average offspring number for m> 4 is the
same in the ETAS and observed catalogs. (2) On the other
hand, the average offspring number for m< 4 is signifi-
cantly smaller in the ETAS results than in the observed
catalog. (3) The variance of Noff in the observed catalog
is always larger than that in the ETAS catalog. (4) The ratio
between the variance and average increases from 1 to about
100 as the magnitude m increases from 2 to 6 in both the
ETAS and observed catalogs; this further emphasizes
inappropriateness of the Poisson model, for which the ratio
is unity.
[43] An important consequence of the increased variability

of the offspring number in the observed catalog compared to
the ETAS model is the existence of a large population of
singles—mainshocks with no offspring (Tables 1 and 2).
The existence of singles cannot be explained solely by
catalog artifacts such as incompleteness or the minimal
reported magnitudes. Singles comprise 84% of all detected
clusters (as opposed to 31% of all events, as reported
in Table 1), 53% of the clusters with m ≥ 3, and 17%
of the clusters with m ≥ 4. The largest single has
magnitude 5.0.

4.3. Cluster Size, Number of Foreshocks, Aftershocks

[44] The distribution of cluster size N is shown in Figure 13;
it can be closely approximated by a Pareto distribution with
index a � -1. Recall that the Pareto cumulative distribution
function can be written as F(x) = 1�Αx-a, with x≥A1/a for
some A, a> 0. This is equivalent to 1�F(x) =Ax-a, or
log[1�F(x)] =�a log[x] + log A. Hence, the log-log plot of
the tail function 1�F(x) versus x for the Pareto distribution is
linear. This is seen in Figure 13 for two different minimal mag-
nitudes of the nearest-neighbor cluster analysis. The approxi-
mate Pareto distribution of cluster sizes with index a � -1 is
reproduced in the analysis of the ETAS model (Figure
D10b) and can be readily explained by the combination of
exponential mainshock magnitude distribution with a given
b-value (index) and exponential number of offspring for a
given mainshock with index a � b [Saichev et al., 2005].

We emphasize that Figure 13 merely illustrates that the cluster
size distribution can be approximated by a Pareto law; it is not
intended to validate or invalidate a more delicate assumption
about the precise equality of a and b, which has no effect on
the results of this study.
[45] Figure 14 illustrates the distribution of the number of

aftershocks and foreshocks per cluster. This analysis
includes families with no aftershocks and/or foreshocks as
well as singles; this makes it possible for the average number
of fore/aftershocks to be less than 1. Figure 14a shows the
number N-1 of the foreshocks and aftershocks in a cluster
as a function of the cluster mainshock magnitude m. The
total number of foreshocks and aftershocks scales as (N-1)
/ 10bm with b = 0.95� 0.06 (95% CI); a line with slope
0.95 is shown for visual convenience. The same analysis is
done separately for aftershocks and foreshocks in Figure 14b.
The number of aftershocks (circles) per cluster is much larger
than that of foreshocks (diamonds). The number NA of after-
shocks still scales with the mainshock magnitude as NA

/ 10bm with b � 0.99� 0.06 (95% CI). The number of fore-
shocks does not exhibit a clear exponential scaling; neverthe-
less, the best exponential fit would have index b � 0.6 that
is smaller than that for aftershocks. The estimation of slopes
is done here within the magnitude range m≥ 4; the slope for
the lower magnitudes is slightly larger in both analyzes. Sim-
ilar productivity distribution is observed in the ETAS model
(supporting information section D and Figure D10a).
[46] The observed increase of the fore/aftershock number

with the cluster mainshock magnitude is ultimately caused
by the existence of the catalog lower cutoff magnitude. To
demonstrate this, we examine in Figure 15 the cluster size
N for different mainshock magnitudes in the Δ-analysis,
which only considers foreshocks and aftershocks within
Δ=2 magnitude units from the respective mainshock. The
cluster size seems to be independent of the mainshock mag-
nitude; this visual impression is confirmed by the ANOVA
[Freedman, 2005] and Kruskal-Wallis [Kruskal and Wallis,
1952] tests summarized in Table 4. Specifically, we test the
null hypothesis H0: Cluster sizes have the same mean
(ANOVA) or median (Kruskal-Wallis) in different groups
according to the cluster mainshock magnitude. We run three

10−4

10−3

10−2

10−1

No. of events in a cluster, N 

P
ro

po
rt

io
n 

of
 c

lu
st

er
s 

10−4

10−3

10−2

10−1

P
ro

po
rt

io
n 

of
 c

lu
st

er
s 

(a)

No. of events in a cluster, N 

(b)

100 101 102 103 100 101 102 103

Figure 13. Distribution of the cluster size N in the nearest-neighbor forest (Figure 5b). The figure shows
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to different lower magnitude cutoffs used in the nearest-neighbor analysis: (a) m ≥ 2 and (b) m ≥ 3.
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series of tests, each of which corresponds to three consecu-
tive lines of the table. Each test is done (1) using ANOVA
approach (columns 4 and 5) and (2) using Kruskal-Wallis
approach (columns 6 and 7). In ANOVA tests, we use
log10(N) to better satisfy the assumption of sample Normal-
ity; the Kruskal-Wallis test refers to the sample median and
hence gives the same results for N and log10(N). The first
series of tests (lines 1–3) compares the cluster size N among
several groups of clusters binned into equidistant mainshock
magnitude intervals. The null hypothesis cannot be rejected
if the magnitude bins have lengths below 1 (lines 2 and 3).
For longer magnitude bins (line 1), the null is rejected. A
more detailed analysis (not shown) suggests that the reported
rejection is due to a slight decrease of the cluster size at the
lowest mainshock magnitudes. The observed decrease is in
fact caused by the singles (N= 1), which possibly form a par-
ticular population as discussed in section 4.2. This is demon-
strated in the second series of tests (lines 4–6) that excludes
the singles from the analysis; i.e., it considers only earth-
quake families. The null cannot be rejected in any of the
six tests. Binning of clusters into equidistance magnitude
intervals (as is done in the above tests) results in samples
of significantly different sizes, which may affect the testing
results. To avoid this effect, the third series of tests (lines
7–9) compares the family sizes (excluding singles) in bins
of equal size. The null hypothesis cannot be rejected in
any of the six tests. These results suggest that the observed
cluster structure is robust with respect to the earthquake
magnitudes; namely, the family size depends only on the
magnitude difference of mainshock and other family events,
and not on their absolute values. We also provide additional
support to the hypothesis that singles form a special popula-
tion that should be analyzed separately from the families.

4.4. Temporal Structure of Families

[47] Figure 16 shows the intensity of events in the clusters
vs. time, averaged over all the detected clusters in regular
and Δ-analyses. Both analyses recover the conventional
structure of a foreshock-mainshock-aftershock sequence,
with a lower number of foreshocks and higher number of
aftershocks. Both aftershock and foreshock intensities

decrease away from the time of mainshock. This is further
illustrated in Figure 17 that shows a power-law decay of
both aftershock and foreshock intensities away from the
time of the mainshock. Specifically, the figure shows
results for families with mainshock magnitude m ≥ 4, for
Δ-aftershocks (Figure 17a, black dots) and Δ-foreshocks
(Figure 17b), with Δ = 2 and within 50 days from the
mainshock. Figure 17a also shows (light squares) the inten-
sity of first-generation offspring for parents with magnitude
m ≥ 4, within Δ=2 magnitude units from the parent. The
results are consistent with those obtained in the ETAS model
(cf. supporting information section D and Figure D11): The
slopes for both aftershock and foreshock decays are compa-
rable, and the slope for aftershock decay is lower than that
for the first-generation offspring, which is due to the exis-
tence of secondary, tertiary, etc. aftershocks. The intensity
slopes remain the same (within statistical margins of error)
if the analysis is done separately for different mainshock
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magnitudes (not shown). The same analysis for regular after-
shocks and foreshocks (as opposed to Δ-aftershocks/
foreshocks) leads to different decay slopes for different
mainshock magnitudes, with significant deflation of the esti-
mated slopes at large mainshock magnitudes (not shown);
this is explained by significant increase of secondary, etc. af-
tershocks as well as incomplete registration of small events
in the vicinity of a large one.
[48] The above results are consistent with the Omori-Utsu

law for the intensity of both aftershocks and foreshocks
[Omori, 1894; Utsu, 1961; Papazachos, 1973; Jones and
Molnar, 1979; Utsu et al., 1995; Helmstetter et al., 2003]:

Λ tð Þ ¼ K

t þ cð Þp : (3)

[49] Our observations indicate that p= 0.82� 0.04 for Δ-
aftershocks within 0.1 ≤ t ≤ 10 days, p= 1.02� 0.02 for the
first-generation offspring within 0.01 ≤ t ≤ 10 days; and
p = 0.89� 0.13 for Δ-foreshocks within 0.1 ≤ t ≤ 10 days.
All margins of errors refer to a 95% confidence interval.
Recall that the productivity index K of fore/aftershocks in
regular analysis (when all events reported in a catalog are
considered in the analysis) scales with the mainshock
magnitude m as

K ¼ 10bm; (4)

with b � 1 for aftershocks and b < 1 for foreshocks
(Figure 14). In the Δ-analysis (which only includes

aftershocks and foreshocks within Δ magnitude units from
the respective mainshock), the productivity K =K(Δ) is a
constant that depends on Δ but not on the mainshock magni-
tude. These results are consistent with the existing knowl-
edge about properties of aftershocks and foreshocks [Utsu,
1961; Papazachos, 1973; Jones and Molnar, 1979;
Kisslinger and Jones, 1991; Utsu et al., 1995; Helmstetter
and Sornette, 2002; Helmstetter et al., 2003].
[50] The following observation from Figure 16 is notewor-

thy: The aftershock intensity in the regular analysis is order
of magnitude larger than that in the Δ-analysis (as expected).
In contrast, however, the difference between the foreshock
intensities in the regular and Δ-analyses is much smaller. A
more focused examination of this is illustrated in Figure 18a
that shows the distribution of the magnitude differences dm=
mmainshock - mevent of family events and their respective
mainshocks. The foreshockmagnitudes are prominently closer
to that of the mainshock compared to the aftershock magni-
tudes. Accordingly, more foreshocks remain in the family in
the Δ-analysis. The observed difference between aftershocks
and foreshocks magnitude distributions cannot be explained
by the conditional definition of event types. This is illustrated
in supporting information section D (Figure D12a) by analysis
of the ETASmodel. Interestingly, as shown in Figure 18b, the
distributions of the difference between the magnitude of the
mainshock and the largest foreshock or aftershock are statisti-
cally the same. This observation is discussed further in the next
section. The difference between the relative numbers of fore-
shocks and aftershocks, and their magnitude differences from
the mainshocks, are consistent with statistical existence of
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Figure 16. Intensity of events in a cluster, in events per day per cluster; mainshock is placed at t = 0. The
figure shows results for all clusters, including singles, with mainshock magnitude m ≥ 4.

Table 4. ANOVA and Kruskal-Wallis Tests of the Hypothesis H0: The Size of a Δ-Cluster Is Independent of the Cluster Magnitude

Experiment
Magnitude
Bin Size

No.
of
Bins

ANOVA Kruskal-Wallis

P-value Reject H0 at 5% Level? P-value Reject H0 at 5% Level?

Bins by magnitude, all clusters 1 4 0.03 Yes 0.006 Yes
0.5 8 0.35 No 0.08 No
0.25 13 0.47 No 0.13 No

Bins by magnitude, no singles 1 4 0.62 No 0.32 No
0.5 8 0.96 No 0.80 No
0.25 13 0.97 No 0.77 No

Equisized bins, no singles - 2 0.87 No 0.43 No
- 5 0.72 No 0.61 No
- 15 0.52 No 0.46 No
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some accelerated failure process as the time of mainshocks is
approached [e.g., Mogi, 1969; Keilis-Borok and Kossobokov,
1990; Bufe and Varnes 1993; Ben-Zion and Lyakhovsky,
2002; Turcotte et al., 2003].

4.5. Båth Law for Foreshocks and Aftershocks

[51] It has been observed in analysis of aftershock
sequences of large earthquakes [e.g., Båth, 1965; Kisslinger
and Jones, 1991; Shcherbakov and Turcotte, 2004; Shearer,
2012] that there is a systematic difference between the mag-
nitudes of a mainshock and the largest aftershock. The value
of the magnitude difference reported in the literature is close
to 1.2 and is independent of the mainshock magnitude. Our
analysis confirms (Figure 18b) the Båth law for aftershocks,
as well as for foreshocks, with average magnitude differ-
ences of 1.1 and 1.2, respectively. Interestingly, the distribu-
tion of the differences Δm =mmainshock – mlargest-event is
almost uniform for both aftershocks and foreshocks within
the range [0, 2], with a few sporadic values above 2 that
correspond to a fast decaying tail of the distribution. The
uniform range [0, 2] seems to be independent of the

magnitudes of the examined families, as illustrated by the af-
tershock analysis of families with mainshock magnitude
m ≥ 5 shown in the inset of Figure 18b. The uniform distribu-
tion within the range [0, 2], with a fast decaying tail at larger
values, explains the mean value of the magnitude difference
in the Båth law that is slightly larger than 1 [e.g., Ben-Zion,
2008]. An almost uniform distribution of Δm or aftershocks
is also observed in the ETAS model (supporting information
section D and Figure D12b). However, the magnitude distri-
bution for the foreshocks in the examined ETAS models
always exhibits significant deviations from a uniform Δm.
The data examined in this study does not allow resolving
whether the ETAS model has systematic deviations from
observations in regards to the foreshock magnitude distribu-
tion. This should be tested further using additional observed
and ETAS catalogs.

4.6. Area and Duration of Families

[52] We define the area A of a group of earthquakes as the
area of the minimal convex hull that contains these earth-
quakes. The area of foreshock and aftershock sequences in
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Figure 17. Intensity of (a) aftershocks and (b) foreshocks in events per day per family. The figure shows
results for families withmainshockmagnitudem≥ 4, forΔ-aftershocks and foreshocks, withΔ = 2, andwithin
50 days from the mainshock. Figure 17a also shows (light squares) the intensity of the first-generation
offspring for parents with magnitude m≥ 4, within Δ=2 magnitude units from the parent.
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Figure 18. Magnitude of family events relative to the family mainshock magnitude. (a) Difference dm
between magnitude of the family mainshock and each foreshock (dashed line) and aftershock (solid line).
(b) Difference Δm between magnitudes of the family mainshock and the largest foreshocks (dashed line)
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The inset in Figure 18b shows the aftershock analysis for families with mainshock magnitude m ≥ 5.
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Δ-analysis is illustrated in Figure 19. The analysis is done
for 147 aftershock sequences and 38 foreshock sequences
with at least five events. The area A scales with the family
mainshock magnitude m as A / 10gm, g � 1 (Figure 19a)
and is independent of the family size N (Figure 19b). This
suggests the existence of a damage zone around the parent
rupture with a linear size that scales with the mainshock
magnitude m as 10lm, l � 0.5. These results are consistent
with the empirical scaling relation log 10P0 = aML + const,
where P0 is the scalar seismic potency defined as
A times slip Δu, a � 1.5, and Δu / A1/2 for crack-like
ruptures [e.g. Ben-Zion, 2008; Kanamori and Anderson,
1975]. The observations show that the foreshock area, on
average, is order of magnitude smaller than the aftershock
area, independent of the family size N.
[53] We also observed (not shown) that the family duration

D is independent of the family mainshock magnitude and
seems to slightly increase with the family size. This suggests
a magnitude-independent mechanism of stress relaxation after
a mainshock. The results are consistent with a process that is
dominated by elastic (rather than viscous) stress transfer. The
slight increase of duration with family size is related to the fact
that larger families tend to be concentrated in relatively hot
areas where viscous processes play a larger role. This issue
will be illustrated in more detail in a subsequent paper.

5. Discussion

[54] We present a statistical methodology for detecting
earthquake clusters based on the generally observed bimodal
distribution of nearest-neighbor distances in a combined
space-time-size domain [Zaliapin et al., 2008; Zaliapin
and Ben-Zion, 2011; Hicks, 2011; Bautista, 2011; Mignan,
2012; C. Gu et al., Triggering cascades and statistical prop-
erties of aftershocks, in review, 2012] and apply the bimodal-
ity to identify systematically individual seismicity clusters in
a relocated catalog of 111,981 events with magnitudes m ≥ 2
in southern California [Hauksson et al., 2012]. The following
features of the proposed technique are noteworthy. Soft
parameterization: the algorithm uses only three numeric
parameters that can be closely estimated from observations;
variations of the parameters within wide limits, largely
exceeding their statistical variability, do not seriously affect
the cluster identification. Stability: The technique is stable
with respect to location errors, minimal reported magnitude,

and catalog incompleteness. Absence of an underlying model:
The technique does not assume any particular form of earth-
quake clustering. The latter is the case, for instance, in the clus-
ter approach of Zhuang et al. [2002] that is based on the
assumption that natural seismicity is fully accounted for by
the ETASmodel (supporting information Section D). Absence
of ad-hoc rules: The technique is self-adapted to observed seis-
micity; it does not use any expert-defined thresholds or tuning
parameters. The latter is the case for the classical window
method of Gardner and Knopoff [1974] and its ramifications.
[55] The iterative approach ofMarsan and Lengline [2008],

which is based on a softly-parameterized technique with no
apriorimodel of clustering, may be considered similar in spirit
to but is quite different than the statistical nearest-neighbor
method used in this study. A particular advantage of our
approach is that the division of the examined seismicity into
background events and clustered events is governed by the
intrinsic and clearly seen bimodal distribution of earthquake
distances (e.g., Figures 4 and D3). The bimodal distribution
is observed in various regional and global catalogs [Zaliapin
et al., 2008; Zaliapin and Ben-Zion, 2011; Hicks, 2011;
Bautista, 2011; Mignan, 2012; Gu et al., in review, 2012], as
well as in the ETAS model (supporting information section
D) [Zaliapin et al., 2008; Gu et al., in review, 2012]. We have
shown in supporting information section B that the bimodal
distribution of earthquake distances cannot be explained by
independent spatial or temporal catalog inhomogeneities but
is rather a feature of local dependent space-time structures.
[56] We define clustered events as groups of events with

abnormally short space-time distances to their nearest neigh-
bors (the lower-left mode of the bimodal distribution of
Figures 4a and 4b) and background seismicity as the collec-
tion of events that do not contribute to the clustered mode
(the upper right mode of the bimodal distribution of
Figures 4a and 4b). The existence of clustered events
suggests a natural way of identifying individual clusters
(section 3) that are the main subject of this study. The back-
ground events, by construction, correspond to a (possibly)
nonstationary inhomogeneous Poisson process with inde-
pendent time and space marginals. This is consistent with
the recent results of Luen and Stark [2012] that declustered
catalogs in southern California cannot be approximated by
a stationary inhomogeneous Poisson process.
[57] The quality and stability of the proposed cluster

detection algorithm are demonstrated using synthetic and
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observed catalogs in supporting information sections D and
E. In particular, we show that our method closely recon-
structs the cluster structure of a spatially isotropic ETAS
model (supporting information section D), simulated as a
branching process with well-defined (although not directly
observed) parent-child attributions. There exists an alternative
interpretation of the ETAS model as a marked point process
with the conditional intensity of equation (D1); in this interpre-
tation the model has no explicit cluster structure. Noticeably,
our technique reveals the existence of a statistically significant
population of clustered events in synthetic ETAS catalogs
(Figure D3), and it does not rely on a particular interpretation
of the ETAS model. We emphasize that this general
observation (existence of clustered events) is independent of
a particular way of forming individual clusters.
[58] We analyze in detail the statistical properties of the

detected individual clusters and compare our findings with
related available results in the literature. Importantly, the
event identification based here on purely statistical analysis
is consistent with the traditional identification of different
types of earthquakes for the largest most conspicuous clus-
ters. In particular, we demonstrate the validity of the
Omori-Utsu (Figures 14, 16, and 17) and Båth (Figure 18b)
laws for aftershocks [e.g., Omori, 1989; Utsu et al., 1995] in
the detected clusters, and confirm that the same laws hold for
foreshocks [e.g., Jones and Molnar, 1979; Helmstetter et al.,
2003]. These laws are observed clearly for foreshocks only
when data of many sequences are stacked [e.g., Papazachos,
1973; Jones and Molnar, 1979], given the small number of
foreshocks in individual sequences. Our results, further-
more, point to an origin of the Båth law related to a specific
distribution (Figure 18b) of magnitude differences between
the mainshock and the largest aftershock/foreshock; this dis-
tribution is almost uniform for differences between 0 and 2
and rapidly decays for larger values. To the best of our
knowledge, the existing statistical explanations of the Bath
law [e.g., Helmstetter and Sornette, 2003; Saichev and
Sornette, 2005; Vere-Jones, 2008] do not refer to this partic-
ular form of the magnitude difference distribution.
[59] The spatial extent of clusters is shown to increase

with mainshock magnitude in agreement with empirical
potency-magnitude scaling relation (Figure 19a). On the
other hand, the other properties of the clusters structure
(except area) depend on the magnitude difference of an
event and its mainshock but not on their absolute values
(e.g., Figure 15), and there is weak-to-no dependency of
cluster durations on the mainshock magnitude. We observe
a power law distribution of the number of events in the clus-
ters, with dominance of the single-event clusters (Figure 13),
which may be a general feature of seismicity. In section 4.2,
we discuss the existence of significant population of singles
– mainshocks with no foreshocks or aftershocks, which
cannot be completely explained by catalog incompleteness
or minimal reported magnitude, and hence presents an
interesting feature of the data. Finally, the observations
include statistical evidence for an accelerated failure process
before mainshocks. This is associated with increasing rate
of foreshocks (Figures 16 and 17) and smaller magnitude
differences between foreshocks and mainshocks than
between aftershocks and mainshocks (Figure 18). Clarifying
the details of this process will be done in a dedicated
future study.

[60] The results of this study provide a foundation for a
more focused analysis of the structure of the detected clusters
that is performed in a companion paper [Zaliapin and Ben-
Zion, 2013]. The analysis done in that paper demonstrates
the existence of three dominant cluster types, corresponding
generally to singles, burst-like and swarm-like sequences,
and that the largest mainshocks are associated with sequences
that are likely a mixture of these three basic types.
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Section A. The earthquake distance: Motivation 1067	
  
The definition (1) of the earthquake distance [Baiesi and Paczuski, 2004] is motivated by the 1068	
  

intuitive expectation that the value of ηij should be small if earthquake j might be related to earthquake i, 1069	
  
and it should be larger if there is no relationship between earthquakes i and j. To illustrate, consider a 1070	
  
situation when N(m) earthquakes with magnitude above m happen independently of each other in df-1071	
  
dimensional space and time and obey the Gutenberg-Richter relation log10N(m) = a − bm. Then the 1072	
  
expected number of earthquakes with magnitude m within the time interval t and distance r from any 1073	
  
given earthquake is proportional to , which is an essential component of the definition (1). In 1074	
  
other words, the distance (1) is the number (up to a constant) of earthquakes of magnitude m that are 1075	
  
expected within the time t and distance r from the earthquake j in a process with no clustering. If the 1076	
  
distance ηij is significantly smaller than most pair-wise distance within the catalog, this means that 1077	
  
earthquake j has happened abnormally close to i; this motivates one to consider i as a parent for j. 1078	
  
Naturally, this approach only reveals statistical, not causal, relationships between earthquakes. Figure A1 1079	
  
illustrates the connection between the normalized time T (see Eq. (2) of the main text) and the calendar 1080	
  
time in years.  1081	
  

 1082	
  
Section B. The origin of the bimodal distribution of nearest-neighbor distances 1083	
  

The goal of this section is to shed some light on the origin of the bimodal distribution of 1084	
  
the nearest-neighbor distance shown in Fig. 4 of the main text. Comparison of the results for the 1085	
  
observed seismicity (Fig. 4) with that for a homogeneous Poisson process (Fig. 3) suggests that 1086	
  
the bimodality is related to earthquake clustering. There are several primary types of clustering 1087	
  
in the catalogs: time-independent space clustering mainly related to the fault network geometry, 1088	
  
space-independent time clustering related to (possible) global changes of seismic activity, and 1089	
  
dependent space-time clustering mainly related to the foreshock-aftershock sequences or 1090	
  
swarms. We demonstrate below that the cluster mode of the distribution in Fig. 4 cannot be 1091	
  
explained by temporal or spatial clustering of earthquakes alone. The existence of this mode is 1092	
  
ultimately caused by the clusters with dependent spatio-temporal structure that are due to the 1093	
  
groups of earthquakes that happen within localized spatio-temporal regions; mainly to the 1094	
  
foreshock-aftershock sequences or swarms.  1095	
  

Towards this goal, we consider three models of seismicity that retain the marginal spatial 1096	
  
and/or temporal distributions of the real earthquakes while exhibiting no dependent spatio-1097	
  
temporal clustering. We start with the catalog of observed earthquakes with m ≥ 3, which 1098	
  
contains 12,105 earthquakes. The first randomized catalog is obtained by independent uniform 1099	
  
random reshuffling of times and locations of the observed events. Reshuffling means that the 1100	
  
event times si, i = 1,…, n, in the new catalog are obtained from the original times ti, i = 1,…, n, 1101	
  
as si = tσ(i), where σ(i) denotes a uniform random permutation of the sequence [1,…,n]. An 1102	
  
independent reshuffling procedure is then applied to the epicenter locations (φi, λi). The time-1103	
  
latitude map of seismicity from this catalog is shown in Fig. B1a; the joint distribution (T,R) of 1104	
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the rescaled time and space components of the nearest-neighbor distance is shown in Fig. B2a. 1105	
  
By construction, this randomized catalog has the same marginal time and space distributions as 1106	
  
the observed seismicity. For instance, in Fig. B1a one can see significant variations of seismic 1107	
  
activity along the latitude, which is related to the fault network geometry, as well as the most 1108	
  
prominent time variations related to the aftershocks activity in the original catalog. At the same 1109	
  
time, we have destroyed all possible clusters with dependent spatio-temporal structure. For 1110	
  
example, when randomized seismic activity increases in 1992, it affects the entire region, and not 1111	
  
only the vicinity of the Landers earthquake as in the original catalog (cf. Fig. 2). Figure B2a 1112	
  
shows that this randomization suffices to destroy the bimodal structure of the joint distribution 1113	
  
(T,R): the randomized catalog is characterized by a unimodal distribution of (T,R) located along a 1114	
  
diagonal line. 1115	
  

The second randomized catalog (Figs. B1b and B2b) is obtained by reshuffling the events 1116	
  
locations and using independent uniform random times within the duration of the original 1117	
  
catalog. This catalog retains the marginal spatial distribution (and fault-related clustering) of 1118	
  
events, while removing all the temporal inhomogeneities. The joint distribution (T,R) is again 1119	
  
unimodal; in addition it is more compact and is better separated from the origin, comparing to 1120	
  
that of the randomized catalog from Fig. B2a. These differences are related to removing the 1121	
  
temporal clustering of events. 1122	
  

The third randomized catalog (Figs. B1c and B2c) is obtained by retaining the original 1123	
  
times of events and using random locations that are uniformly distributed between 30 – 37.5N 1124	
  
and 113 – 122W. This catalog retains the temporal clustering of the original catalog while 1125	
  
removing all the spatial inhomogeneities. The joint distribution of (T,R) is bimodal in this case, 1126	
  
with a weak second mode caused by the temporal clusters. The events that comprise this mode 1127	
  
tend to happen close in time to their parents (T ≈ 10-6) and far away from the parents in space (R 1128	
  
≈ 100.5). This spatial separation is two orders of magnitude higher than that observed in the 1129	
  
original catalog (Fig. 5b). A noteworthy observation is that the time clustering of the observed 1130	
  
seismicity is “stronger” than the spatial clustering, as illustrated by the comparison of the joint 1131	
  
distributions (T,R)  in Figs. B2b and B2c. 1132	
  

 1133	
  
Section C. Proof of the tree structure of the spanning earthquake network 1134	
  

Recall that the NND η is asymmetric: The parent i of event j must happen earlier: ti < tj. 1135	
  
Hence, if we start at any earthquake j in the catalog and repeatedly move from each event to its 1136	
  
parent, we never can reach j again. This implies that each possible nearest-neighbor cluster is a 1137	
  
tree (a graph without cycles). Next, we show that we only have a single spanning tree. Each 1138	
  
nearest-neighbor cluster (tree) must have a root – an earthquake without the parent. But we have 1139	
  
only one such earthquake – the first event in the catalog; all other events have well-defined 1140	
  
parents. This completes the proof. 1141	
  

 1142	
  
Section D. Quality and stability of cluster identification in ETAS model 1143	
  
 1144	
  
D.1 Model specification and parameters 1145	
  

The ETAS belongs to the class of Marked Point Processes (MPP). Traditionally, the main object 1146	
  
of MPP analysis is the conditional intensity m(t,f,m|Ht) of a process Zt={ti,fi,mi} given its history  Ht = 1147	
  
({ti,fi,mi} : ti < t) up to time t. Here ti represents earthquake occurrence times, fi their coordinates (e.g., 1148	
  
epicenter, hypocenter, or centroid) and mi the magnitudes. It can be shown [Daley and Vere-Jones, 2002] 1149	
  
that conditional intensity completely specifies the process Zt. The statistical analysis and inference for Zt 1150	
  
are done using the conditional likelihood 1151	
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 logLt = logµ ti , fi ,mi |Ht( )
ti<t
∑ − µ t, f ,m |Ht( )dt dmdf

F
∫

M
∫

0

t

∫ ,                   (D1) 1152	
  

where M and F denote the magnitude range and spatial domain of events, respectively. The ETAS 1153	
  
assumes a particular self-exciting mechanism of earthquake generation. Namely, some background events 1154	
  
(immigrants) occur according to a homogeneous stationary Poisson process. Each earthquake in a catalog 1155	
  
generates offspring (first generation events), these offspring generate their own offspring (second 1156	
  
generation events), and so on. The resulting seismic flow is a compound of immigrants and triggered 1157	
  
events from all generations. The main body of the work on ETAS operates under the assumption that the 1158	
  
magnitudes of events are independent and drawn from the Gutenberg-Richter (exponential) distribution 1159	
  
with a constant b-value. This reduces conditional intensity to the following special form, which allows 1160	
  
various particular parameterizations [Ogata, 1998, 1999]: 1161	
  

. 1162	
  

We use in this study a homogeneous background intensity µ0 = µ  and the following parameterization for 1163	
  
the response function g suggested by Ogata [1998, Eq. (2.3)]: 1164	
  

.                                      (D2) 1165	
  

Here m0 is the lowest considered magnitude, and (x,y) are Cartesian coordinates of the epicenters. The 1166	
  
model is specified by 8 scalar parameters θ  = {µ, b, K, c, p, α, d, q}.  1167	
  

It has been shown [Sornette and Werner, 2005; Veen and Schoenberg, 2008; Wang et al., 2010] 1168	
  
that estimation of the ETAS model is affected by the catalog’s lowest magnitude cutoff, which may lead 1169	
  
to a serious bias in the numerical values of the estimated parameters. It is also known that the ETAS 1170	
  
parameters depend on the tectonic environment [Chu et al., 2011] and local physical properties of the 1171	
  
lithosphere [Enescu et al., 2009]. These are some of the reasons why there are no commonly accepted  1172	
  
“standard” values of the ETAS parameters for a given region. In this study, we generate synthetic ETAS 1173	
  
catalogs using a range of parameters consistent with those reported in the literature [e.g., Wang et al., 1174	
  
2010; Chu et al., 2011; Marzocchi and Zhuang, 2011]. 1175	
  

 1176	
  
D.2 Clustering in ETAS model 1177	
  

An ETAS catalog can be naturally divided into individual clusters according to the model’s 1178	
  
explicit parent-offspring relationships. Namely, a cluster is defined as a group of events that have the 1179	
  
common ancestor (grand-parent of arbitrary order), which itself is a background event (has no parent). 1180	
  
This unique cluster’s ancestor is also included in the cluster; by construction it is always the first event in 1181	
  
a cluster. According to this definition, some clusters consist of a single background event, while the 1182	
  
others include several generation of offspring. Within each cluster, we assign the following event types, 1183	
  
same as in analysis of observed catalogs. Mainshock is the first largest event in a cluster, foreshocks are 1184	
  
all events before the mainshock, and aftershocks are all events after the mainshock.  1185	
  

We next explore how the cluster technique of Sect. 3 can recover (i) the partition of an ETAS 1186	
  
catalog into individual clusters, (ii) the event type (main/fore/aftershock) assignment and (iii) the parent-1187	
  
offspring assignment. The analysis is done using the observed catalog of events that reports only their 1188	
  
occurrence time, magnitude and location. It should be noted that while we do study the parent-offspring 1189	
  
assignment, it plays secondary role in the context of our study, comparing to the partition into individual 1190	
  
clusters and event type. In the subsequent analysis, the event types, as well as parent and cluster 1191	
  
assignments that correspond to the actual ETAS model structure will be called true; while those estimated 1192	
  
using our cluster technique will be called estimated. 1193	
  

 1194	
  
 1195	
  
 1196	
  

µ t, f |Ht( ) = µ0 t, f( ) + g t − ti , f − fi ,mi( )
i:ti<t
∑

g t, x, y,m( ) = K
t + c( )p

exp α m −m0( )( )
x2 + y2 + d( )q
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D.3 Cluster identification: quality 1197	
  
The analysis in this study was done using multiple ETAS catalogs with a range of realistic 1198	
  

parameter values. We found that the results in different catalogs are qualitatively very similar to each 1199	
  
other, with quantitative differences being directly related to the model parameters (e.g., different b-value, 1200	
  
p-value, etc.)  In this and the next section we illustrate the results using a particular ETAS catalog that 1201	
  
corresponds to parameters µ = 0.003 (km2 year)-1, b = α = 1, K = 0.007 (km2 year)-1, c = 0.00001 year, p = 1202	
  
1.1, q = 1.7, d = 30 km2; the simulations are done within a region of 500×500 km during 10 years. The 1203	
  
synthetic catalog is illustrated in Figs. D1a, D2a that show, respectively, the magnitude and X coordinate 1204	
  
of events as a function of time. The catalog consists of 29,761 events, of which 7,545 (25%) are 1205	
  
background events. Figure D3 shows the joint 2-dimensional distribution of the temporal (T) and spatial 1206	
  
(R) components of the nearest-neighbor distance η (panel a) as well as the distribution of the scalar values 1207	
  
of η (panel b). The figure clearly demonstrates prominent bimodality of the nearest-neighbor distance, 1208	
  
similar to the one reported for the observed seismicity (cf. Fig. 4). A bimodal distribution of the nearest-1209	
  
neighbor distance η  in ETAS model has been also reported by Zaliapin et al. (2008) and Gu et al. (2012).  1210	
  

The time-magnitude and time-coordinate sequence of mainshocks identified by the analyzed 1211	
  
cluster technique are illustrated in Figs. D1b and D2b, respectively. Visually, our cluster procedure makes 1212	
  
a decent job in identifying and removing the clusters from the original ETAS catalog. Tables D1, D2 and 1213	
  
Fig. D4 assess the cluster detection in a quantitative way. Table D1 cross-classifies the events in the 1214	
  
catalog according to their true vs. estimated type: 88% of events have been correctly classified into 1215	
  
fore/main/aftershocks; the majority of the misclassified events (7%) are aftershocks recognized as 1216	
  
mainshocks. The latter misclassification is due to the long-range triggering, when offspring occur at large 1217	
  
time and/or distance from their parents. This long-range triggering is caused by the power-law tails of the 1218	
  
temporal and spatial offspring kernels use in ETAS model. In the presence of a non-zero background the 1219	
  
long-range offspring are mixed with the background events and cannot be correctly identified by a purely 1220	
  
statistical procedure; the number of misclassifications increases with the background intensity. Table D2 1221	
  
illustrates similar cross-classification for 279 events with magnitude above 5. Clearly, the quality of 1222	
  
detection increases with magnitude of analyzed events. Figure D4 shows the proportion of various 1223	
  
misclassifications among events with magnitude above m:  Black dots show proportion of events with 1224	
  
misspecified parent, open circles – proportion of events assigned to a wrong cluster, squares – proportion 1225	
  
of misclassified types (the same as Tables D1, D2), diamonds – proportion of misclassified mainshocks. 1226	
  
Notably, the proportion of events with misspecified parents is about 40% for events of magnitude below 1227	
  
6, which is much higher than the proportion of other misclassification types. In particular, the cluster is 1228	
  
correctly recognized for over 88% of events; the proportion of respective errors decreases to zero as 1229	
  
magnitude m increases to 5.8. This shows that although it can be difficult to detect the true ETAS parents, 1230	
  
one can still closely reconstruct the cluster structure of a catalog. This is an important observation, since 1231	
  
the clusters present the primary object of the analysis in this study. 1232	
  

 1233	
  
D.4 Cluster identification: stability 1234	
  

This section assesses and illustrates the stability of cluster identification with respect to the 1235	
  
parameters of the algorithm, minimal reported magnitude, catalog incompleteness, and errors in event 1236	
  
location. 1237	
  

First, we consider the three numerical parameters that are used in the cluster detection procedure: 1238	
  
fractal dimension of epicenters df, b-value, and cluster detection threshold η0. The value of the threshold 1239	
  
η0  is estimated in each experiment from the Gaussian mixture model [Hicks, 2011], except the 1240	
  
experiments when we explicitly vary η0. We intentionally choose wide ranges for the parameter values:  1241	
  

1 ≤ df  ≤ 3, 0 ≤ b  ≤ 2, and -6 ≤ η0 ≤ -2. 1242	
  
The chosen ranges are much wider than the respective statistical margins of error that correspond to 1243	
  
estimating these parameters in ETAS model or in observations. This is done in order to test the general 1244	
  
limits of applicability of the proposed cluster technique. Recall that the main version of the analysis uses 1245	
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the true ETAS values df = 2 and b = 1 and the corresponding threshold η0 = -4.476 from the Gaussian 1246	
  
mixture model; we refer to these parameters as standard. 1247	
  

Figure D5 summarizes the results of 1D stability analysis where we vary a single parameter and 1248	
  
keep the rest at their standard values. A rather surprising observation is that the total proportion of 1249	
  
misspecified event types, shown in panels (a-c), never exceeds 33%, even for obviously outrageous 1250	
  
parameter values. For the parameters close to their standard values (shown by stars), the proportion of 1251	
  
misspecified events is within 10% – 15%, which is very close to the error of 12% observed in the main 1252	
  
version of the analysis. Panel (d) shows individually the proportion of misspecified mainshocks (squares) 1253	
  
and aftershocks (triangles) as a function of the threshold η0. This panel emphasizes the broadness of the 1254	
  
parameter range considered – the proportion of misspecified mainshocks changes from 0 to 100% within 1255	
  
the considered range. The panel also illustrates that most of the aftershocks are very well separated from 1256	
  
the mainshocks: even when the threshold is so low that all mainshocks are properly specified, the 1257	
  
proportion of misspecified aftershocks is only 40%. The same conclusion can be derived, of course, from 1258	
  
visual analysis of the bimodal distribution in Fig. D3. 1259	
  

Figure D6 illustrates a 2D stability analysis; it shows the proportions of misspecified mainshocks 1260	
  
(panel a) and aftershocks (panel b) as a function of the pair (b,df) on a 20x20 grid; the threshold η0  is 1261	
  
estimated in each experiment from a Gaussian mixture model. Similar to the 1D stability experiments, the 1262	
  
proportion of errors is a smooth function of the algorithm parameters, so that the error remains close to 1263	
  
the one observed for the main version of algorithm. The proportion of misspecified mainshocks in all 1264	
  
experiments is within 5%-10%. A significant increase of misspecified aftershocks, to 30%, is only 1265	
  
observed for clearly “wrong” values of parameters, e.g. b ≈ 0, df ≈ 1. 1266	
  

We now analyze stability of cluster detection with respect to the minimal reported magnitude. 1267	
  
Specifically, we perform the cluster analysis for a truncated catalog, only using magnitudes m ≥ m0 1268	
  
(starting with computing nearest-neighbor distances, etc.), and then compare the event types estimated in 1269	
  
the truncated catalog with the true event types. The results are shown in Fig. D7. The proportion of 1270	
  
misspecified events decreases with completeness magnitude m0 from the original 11.57% to 0 at m0 = 5.7; 1271	
  
in other words, the cluster detection quality increases with magnitude of event. The same conclusion can 1272	
  
be drawn from the analysis of Fig. D4 above. We notice that the analysis of Fig. D4 differs from the one 1273	
  
performed here in that in Fig. D4 we always use the event types estimated in a complete catalog, and only 1274	
  
report proportions of errors for different magnitude thresholds. Here, in contrast, we perform the complete 1275	
  
cluster and event type estimation in each truncated catalog. 1276	
  

Next, we analyze stability of cluster detection with respect to the catalog incompleteness. For 1277	
  
that, we perform thinning of the original ETAS catalog so that each event with magnitude 3 ≤ m ≤ 5 has 1278	
  
probability P(m) = (5-m)/2 to be removed. More specifically, all events with magnitude m ≤ 3 are 1279	
  
definitely removed; all events with magnitude m ≥ 5 are definitely retained; all other events has removal 1280	
  
probability P(m) that decreases linearly with magnitude. Figure D8a compares the magnitude distribution 1281	
  
in the original and a thinned catalog. The thinning in this experiment is quite severe: it retains only about 1282	
  
20% of events in the catalog. We generate 100 thinned catalogs according to this procedure and compute 1283	
  
the proportion of misspecified events in each of them. An event is called misspecified if (i) it has been 1284	
  
retained in the catalog after thinning, and (ii) its type in the analysis of the thinned catalog is different 1285	
  
from the type of this event in the analysis of the actual catalog. The proportion of misspecified events is 1286	
  
0.1249 ± 0.009 (95%CI); its distribution is shown in Fig. D8b. Comparing this with the original 1287	
  
misspecification proportion of 0.1157 (see Sect. D3, Table D1), we conclude that the catalog 1288	
  
incompleteness has a very weak effect on the cluster detection quality. 1289	
  

Finally, we analyze the effects of location errors. For that, we randomly shift the epicenters of 1290	
  
events in the ETAS catalog by adding independent 2D Gaussian errors with independent components of 1291	
  
zero mean and standard deviation σ. We then perform cluster analysis on a randomized catalog and 1292	
  
compare the estimated results with the true ones, focusing on the proportion of the events with 1293	
  
misclassified types. We considered 100 randomized catalogs for each value of σ. Recall that the cluster 1294	
  
identification in the true catalog corresponds to the proportion 0.1157 of misclassified events (see Sect. 1295	
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D3, Table D1). The proportion of misclassified events in randomized catalogs for 1296	
  
σ  =  0.1km, 0.3km, and 1.0km is, respectively, 0.1167±0.001, 0.1170±0.002, and 0.1187±0.002 (95%CI). 1297	
  
This shows that random location errors produce practically negligible effect on cluster detection and event 1298	
  
classification. 1299	
  

 1300	
  
D.5 Basic cluster statistics  1301	
  

This section focuses on basic statistics of the detected clusters. The ETAS catalog we use here is 1302	
  
longer than the one in the previous sections, to be a better match to the observed catalog in southern 1303	
  
California. Specifically, we use an ETAS model with the same parameters as above: µ = 0.003 (km2 year)-1304	
  
1, b = α = 1, K = 0.007 (km2 year)-1, c = 0.00001 year, p = 1.17, q = 1.7, d = 30 km2; the simulations are 1305	
  
done within a region of 500×500 km during 15 years. The catalog consists of 146,432 earthquakes. The 1306	
  
bimodal distribution of the nearest-neighbor distance and cluster identification quality (not shown) are 1307	
  
similar to those reported in the previous sections for a shorter ETAS catalog.  1308	
  

Figure D9 illustrates the frequency-magnitude distribution for mainshocks/singles and 1309	
  
aftershocks (true and estimated). The true mainshock and aftershock distributions are distinctly different, 1310	
  
each being closely approximated by an exponential (GR) law with different b-values. We also observe 1311	
  
upward (downward) deviations from the exponential laws at largest magnitudes. The estimated 1312	
  
distributions are very close to the true ones (see legend). Panel (a) shows the cumulative distribution 1313	
  
function (cdf), panel (b) shows the normalized cdf in order to emphasize the deviations from a pure 1314	
  
exponential law. Table D3 reports the maximum likelihood estimations of the b-values for different event 1315	
  
types together with the respective uncertainties.  A noteworthy observation is that the estimated b-value 1316	
  
for aftershocks is larger than that for mainshocks and foreshocks; the same difference is seen in other 1317	
  
ETAS catalogs as well (not shown). This difference is due to the conditional assignment of event types, 1318	
  
which deflates the b-value for mainshocks (largest events in respective clusters), and, accordingly, inflates 1319	
  
it for aftershocks. The b-value for foreshocks is smaller than that for aftershocks since larger events have 1320	
  
higher chance to become parents for mainshocks, according to the employed earthquake distance of Eq. 1321	
  
(1).  1322	
  

Figure D10 illustrates cluster productivity: the number of foreshocks and aftershocks per 1323	
  
mainshock. Panel (a) shows the cluster size N as a function of cluster mainshock magnitude m; 1324	
  
the data is closely approximated by the exponential line N 10βm. The exponent index β 1325	
  
estimated within the intermediate magnitude ranges 3.0 ≤ m ≤ 6.0 is 1.09 ± 0.02, where the error 1326	
  
margins correspond to a 95% confidence interval (95% CI). We also show for comparison the 1327	
  
number of first-generation offspring per parent (squares), which by ETAS construction has 1328	
  
exponent index 1. Panel (b) shows the cumulative distribution of the cluster size N (circles) and 1329	
  
the number of first-generation offspring (squares). Both distributions have a power-law tail. The 1330	
  
distribution of the offspring is closely approximated by a Pareto law F(x) = cx-a, c>0, a ≈1. The 1331	
  
cluster size distribution deviate from this scaling due to finite size effects: The largest events in 1332	
  
the catalog tend to attract a larger number of offspring, while the smallest events cannot attract 1333	
  
enough offspring because of the catalog’s magnitude cutoff. The value of the scaling exponent a 1334	
  
≈ 1 is related to the chosen values of the ETAS parameters b =α  =1. It is readily seen (e.g., 1335	
  
Saichev et al., 2005) that the combination of exponential frequency-magnitude relationship with 1336	
  
b = 1 and exponential offspring productivity with α  =1 leads to the power law cluster size 1337	
  
distribution with index a = b/α  = 1. It must be noted though that this argument concerns only the 1338	
  
first-generation offspring, while we work with offspring of all generations. We notice, however, 1339	
  
that in the examined catalog clusters with only first generation offspring comprise 77% of all 1340	
  
non-single clusters, and clusters with the average leaf depth smaller than 2 (hence, with a 1341	
  
significant fraction of the first generation offspring) comprise 86% of all non-single clusters. 1342	
  
Similar proportions hold for the other examined ETAS catalogs. Hence, the first order 1343	
  

∝
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approximation to the cluster size distribution can be done under the assumption of single 1344	
  
generation offspring. 1345	
  

The intensity of foreshocks and aftershocks within 50 days of the mainshock is shown in 1346	
  
Fig. D11. Black dots refer to aftershocks (panel a) and foreshocks (panel b) of mainshocks with 1347	
  
magnitude m ≥ 4. The slope of aftershock decay estimated for t ≥ 0.5 day, is -0.93 ± 0.09 1348	
  
(95%CI); the slope of foreshock decay is harder to estimate due to large fluctuations of the 1349	
  
respective intensities. The deviation of the aftershock slope from p = 1.1 used in ETAS 1350	
  
simulations is explained by existence of secondary, ternary, etc. aftershocks. Panel (a) shows for 1351	
  
comparison (light squares) the intensity of the first-order offspring in ETAS model. The slope 1352	
  
estimated within t ≥ 0.5 day is -1.1 ± 0.01 (95%CI).  1353	
  

Figure D12 shows the distribution of magnitude differences between mainshock and 1354	
  
aftershock/foreshocks in families with mainshock magnitude m ≥ 4: panel (a) refers to all 1355	
  
aftershocks and foreshocks; panel (b) refers to the largest aftershock/foreshock in a family. The 1356	
  
first observation (panel a) is that the majority of aftershocks and foreshocks have rather large 1357	
  
magnitude difference from the mainshock: dm ≥ 4 for 80% of aftershocks and dm ≥ 3 for 80% of 1358	
  
foreshocks. It is also noteworthy that the difference Δm between the mainshock and the largest 1359	
  
aftershock (panel b) is almost uniform within the range 0 ≤ Δm ≤ 2, while the foreshock 1360	
  
difference shows larger fluctuations. 1361	
  

Finally, we analyze the distribution of the number Noff of direct offspring. According to 1362	
  
the ETAS definition, the actual number Noff of offspring of an event of magnitude m has Poisson 1363	
  
distribution with intensity λ ∝ 10m. The coefficient of proportionality is determined by the space-1364	
  
time kernel of Eq. (D2). The distribution of the estimated number of offspring though 1365	
  
significantly deviates from a pure Poisson. This is explained by the existence of the actual 1366	
  
offspring of event i that were attached to other events during the estimation, as well as the 1367	
  
offspring of other events that were attached to i. These effects create additional variability in the 1368	
  
estimated number Noff, which can be closely approximated by a negative binomial distribution, 1369	
  
as illustrated in Fig. 12b of the main text. 1370	
  

 1371	
  
Section E. Stability of cluster identification in southern California 1372	
  

This section assesses the stability of cluster identification in the observed catalog. Here, unlike 1373	
  
the analysis of ETAS model, we do not know the “true” cluster structure, so the quality of cluster 1374	
  
identification cannot be directly assessed. At the same time, we can assess its stability. For that, we vary 1375	
  
parameters of the algorithm and compare results with the ones obtained in the main version of the 1376	
  
analysis, which is done here with df = 1.6, b = 1, minimal magnitude m0 = 3, and threshold η0 estimated 1377	
  
from the Gaussian mixture model. The use of adaptive estimation of the threshold is important in these 1378	
  
experiments, since its values depend (although weakly) on the other three parameters of the algorithm. 1379	
  
Figure E1 shows the proportion of events with estimated type different from that obtained in the main 1380	
  
version of analysis, as a function of each of the parameters. Similarly to the ETAS stability analysis, we 1381	
  
intentionally use very wide ranges for parameter variation, in order to explore the general limits of 1382	
  
algorithm stability: 1383	
  

1 ≤ df  ≤ 2, 0 ≤ b  ≤ 2, 3 ≤ m0 ≤ 6, and  -6 ≤ η0 ≤ -4. 1384	
  
The proportion of misspecified types is below 7% for all experiments within the following parameter 1385	
  
ranges:  1386	
  

1.1 ≤ df  ≤ 2, 0.5 ≤ b  ≤ 1.3, 3 ≤ m0 ≤ 6 and -5.5 ≤ η0 ≤ -4.55. 1387	
  
The errors larger than 7% are only observed for the parameter values that are clearly inconsistent with the 1388	
  
available observations, like b > 1.5. Notably, the proportion of errors never exceeds 18% in our 1389	
  
experiments.  1390	
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Next, we analyze the stability of cluster detection with respect to the event location error. 1391	
  
Specifically, we generate 100 catalogs by randomly altering the locations of events. The location error is 1392	
  
modeled by a 2D Normal random variable with zero mean, independent components, and standard 1393	
  
deviation for both component given by the standard error of event location reported by Hauksson et al. 1394	
  
(2012).  The proportion of misspecified event types (compared to the analysis of true event locations) is 1395	
  
0.044±0.005 (95% CI); the maximal observed proportion is 0.051. This shows that the proposed 1396	
  
algorithm is stable with respect to the location uncertainties.  1397	
  

The stability results of this section are consistent with that obtained above in ETAS model. This 1398	
  
supports a conjecture that the quality of cluster detection, if one assumes that there exists a true cluster 1399	
  
structure in observed catalogs, is also good, similar to that in ETAS analysis.   1400	
  

  1401	
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Table D1: Cross-classification of event types (true vs. estimated) in ETAS catalog:  1402	
  
All 29,671 events are considered 1403	
  

 True 
Foreshock Mainshock Aftershock 

 
Estimated 

Foreshock 2760 (9%) 77 (0.2%)  157 (0.5%) 
Mainshock 331 (1%) 7007 (24%) 2198 (7%) 
Aftershock 242 (0.8%) 461 (2%) 16438 (55%) 

 1404	
  
 1405	
  

Table D2: Cross-classification of event types (true vs. estimated) in ETAS catalog: 1406	
  
279 events with magnitude m 5 are considered 1407	
  

 True 
Foreshock Mainshock Aftershock 

 
Estimated 

Foreshock 31 (11%)  1 (0.4%)  1 (0.4%) 
Mainshock 6 (2%) 90 (32%) 11 (4%) 
Aftershock - 4 (1%)  135 (48%) 

 1408	
  
 1409	
  
 1410	
  
 1411	
  
 1412	
  
 1413	
  
 1414	
  

Table D3: Estimated b-values for different event types in ETAS catalog 1415	
  
(maximum likelihood estimation and confidence interval) 1416	
  

 True Estimated 
 b-value 95% CI b-value 95% CI 

Mainshocks 0.932 0.91 – 0.95 0.957 0.94 – 0.97 
Aftershocks 1.006 1.00 – 1.01 1.006 1.00 –1.01 
Foreshocks 0.960 0.92– 1.00 0.935 0.89 – 0.98 

  1417	
  

≥
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 1418	
  
Figure A1: Correspondence between the normalized time T of Eq. (2) (x-axis) used in the 2-D cluster 1419	
  
analysis and time in years (y-axis) for earthquakes of different parent magnitudes, m = 1, 3, and 5. 1420	
  
Horizontal lines indicate times of 1 day, 7 days, 1 month, and 1 year. 1421	
  

1422	
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 1423	
  

1424	
  

 1425	
  
Figure B1: Time-latitude map of earthquakes from randomized catalogs. (a) Times and locations of the 1426	
  
observed events are randomly reshuffled. (b) Locations are randomly reshuffled; times are uniform 1427	
  
random variables.  (c) Locations are uniform random variables, original times. 1428	
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 1429	
  
Figure B2: The joint distribution of rescaled time and space components (T,R) of the nearest-neighbor 1430	
  
distance η  in randomized catalogs. (a) Times and locations are randomly reshuffled. This catalog retains 1431	
  
the marginal spatial and temporal distributions of the observed seismicity, while removing their local 1432	
  
interactions. (b) Locations are randomly reshuffled; times are uniform random variables.  This catalog 1433	
  
retains the spatial clustering, while removing all the time inhomogeneities. (c) Locations are uniform 1434	
  
random variables, original times. This catalog retains the temporal clustering, while removing all the 1435	
  
space inhomogeneities. 1436	
  
 1437	
  
 1438	
  

	
  1439	
  

 1440	
  
Figure D1: ETAS model – an example of declustering. Figure shows the time-magnitude sequence for 1441	
  
events with m 3. (a) All events, n = 29,671; (b) Mainshocks, n = 9,536.  1442	
  

  1443	
  
≥
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1444	
  

 1445	
  
Figure D2: ETAS model – an example of declustering. Figure shows the X coordinate of epicenters vs. 1446	
  
time for all events in the catalog. (a) All events, n = 29,671; (b) Mainshocks, n = 9,536.  1447	
  
 1448	
  
 1449	
  
 1450	
  

 1451	
  
Figure D3: ETAS model – nearest-neighbor distance. (a) Joint distribution of the time and space 1452	
  
components (T,R) of the nearest-neighbor distance η. (b) Histogram of the log-values of the nearest-1453	
  
neighbor distance η. Bimodal distribution is clearly seen: the background part is located above the white 1454	
  
line in panel (a), and corresponds right mode in panel (b); clustered part is located below the white line in 1455	
  
panel (b), and corresponds to left mode in panel (b). The white line in panel (a) corresponds to η =  −4.47.   1456	
  

  1457	
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 1458	
  
Figure D4: ETAS model – cluster identification errors. The figure shows the proportion of various 1459	
  
erroneous identifications for events with magnitude above m.  Dots – wrong parent assignment; circles – 1460	
  
wrong cluster assignment; squares – wrong event type (fore/after/mainshock) assignment, stars – wrong 1461	
  
event type assignment for mainshocks only.  1462	
  
 1463	
  

 1464	
  

 1465	
  
Figure D5: ETAS model – stability of cluster identification. Proportion of events with misspecified event 1466	
  
type vs. model numerical parameters. Each panel refers to variation of a single parameter with the other 1467	
  
parameters fixed. Stars in panels (a)-(c) refer to the values that correspond to the main version of the 1468	
  
analysis, with true values of df = 2, and b = 1, and η0 estimated according to the Gaussian mixture model .  1469	
  
See text for details. Specifically, we vary (a) the fractal dimension df  of epicenters, (b) b-value, and (c-d) 1470	
  
the threshold η0 . Panels (a-c) show the proportion of all events with misspecified type, panel (d) shows 1471	
  
separately the proportion of misspecified mainshocks (squares) and aftershocks (triangles). 1472	
  

  1473	
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 1474	
  
Figure D6: ETAS model – stability of cluster identification. Proportion of misspecified mainshocks 1475	
  
(panel a) and aftershocks (panel b) as a function of the pair (b,df). 1476	
  
 1477	
  
 1478	
  

 1479	
  

 1480	
  
Figure D7: ETAS model – stability of cluster identification. Proportion of events with misspecified types, 1481	
  
as a function of minimal magnitude of analysis. 1482	
  
 1483	
  

  1484	
  
Figure D8: ETAS model – stability of cluster identification in thinning experiment. A thinned catalog is 1485	
  
obtained from the actual catalog by removing each event with probability P(m) that decrease linearly 1486	
  
from 1 to 0 on the interval 3 ≤ m ≤ 5. (a) Magnitude distribution in the actual (black circles) and a thinned 1487	
  
(light circles) catalog. (b) Distribution of the proportion of misspecified events for 100 thinned catalogs. 1488	
  
Black vertical line refers to the proportion of misspecified events in the true, complete catalog.  1489	
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 1490	
  
Figure D9: ETAS model – magnitude-frequency distribution. Figure refers to different event types as 1491	
  
described in the legend. (a) Proportion 1-F(m) of events with magnitude above m, where F(m) is the 1492	
  
empirical cumulative distribution function. (b) Weighted proportion of events with magnitude above m, 1493	
  
[1-F(m)]×10m. Panel (b) emphasizes deviations from an exponential distribution E(m) = 1-10-m with b-1494	
  
value 1, which corresponds to a horizontal line. 1495	
  
 1496	
  
 1497	
  
 1498	
  

 1499	
  
Figure D10: ETAS model – cluster productivity. (a) Number of aftershocks and foreshocks, N-1, in a 1500	
  
cluster vs. cluster magnitude m. Black circles – average number of events in a cluster within magnitude 1501	
  
window of length 0.5. Grey dots – individual clusters. Squares – average number of offspring per parent. 1502	
  
(b) Distribution of cluster size N (black circles) and the number of offspring per parent (squares). 1503	
  

  1504	
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 1505	
  
Figure D11: ETAS model – Aftershock and foreshock intensity. (a) Black dots – aftershocks 1506	
  
within 50 days of mainshocks with magnitude m ≥ 4. Squares – first generation offspring.  (b) 1507	
  
Foreshocks within 50 days of mainshocks with magnitude m ≥ 4. 1508	
  
 1509	
  

	
    1510	
  
Figure D12: ETAS model – magnitude difference analysis. (a) Magnitude difference dm between 1511	
  
mainshock and each aftershock (solid line) and foreshock (dashed line). (b) Magnitude difference Δm 1512	
  
between mainshock and the largest aftershock (solid line) and largest foreshock (dashed line). Families 1513	
  
with mainshock magnitude m ≥ 4 are considered in both panels. 1514	
  

1515	
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 1516	
  

 1517	
  
Figure E1: Stability of cluster identification in southern California. Proportion of events with event type 1518	
  
different from that obtained in the main version of analysis as a function of algorithm parameter: (a) 1519	
  
Fractal dimension of epicenters df, (b) b-value, (c) cluster threshold η0, and (d) minimal magnitude of 1520	
  
analysis. The main version of analysis uses df = 1.6, b = 1, m0 = 3, and threshold η0 estimated from the 1521	
  
Gaussian mixture model. 1522	
  
 1523	
  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


