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S U M M A R Y
We document space-dependent clustering properties of earthquakes with m ≥ 4 in the 1975–
2015 worldwide seismic catalogue of the Northern California Earthquake Data Center. Earth-
quake clusters are identified using a nearest-neighbour distance in time–space–magnitude
domain. Multiple cluster characteristics are compared with the heat flow level and type of
deformation defined by parameters of the strain rate tensor. The analysis suggests that the
dominant type of seismicity clusters in a region depends strongly on the heat flow, while the
deformation style and intensity play a secondary role. The results show that there are two
dominant types of global clustering: burst-like clusters that represent brittle fracture in rela-
tively cold lithosphere (e.g. shallow events in subduction zones) and swarm-like clusters that
represent brittle–ductile deformation in relatively hot lithosphere (e.g. mid-oceanic ridges).
The global results are consistent with theoretical expectations and previous analyses of earth-
quake clustering in southern California based on higher quality catalogues. The observed
region-specific deviations from average universal description of seismicity provide important
constraints on the physics governing earthquakes and can be used to improve local seismic
hazard assessments.

Key words: Earthquake dynamics; Earthquake interaction, forecasting, and prediction;
Statistical seismology.

1 I N T RO D U C T I O N

Seismicity is often discussed as a prime natural example of univer-
sal self-similar behaviour (Bak & Tang 1989; Sornette & Sornette
1989; Keilis-Borok 1990; Rundle et al. 2003; Corral 2004; Turcotte
& Malamud 2004). The term ‘universality’ implies validity of the
same statistical laws in diverse geographic, geological, tectonic and
physical settings; while ‘self-similarity’ refers to the abundance of
earthquake characteristics described by power laws. A related term
to ‘self-similarity’ is ‘scale-invariance’. We recall that the only func-
tion that is invariant with respect to changes of measurement units
and/or scale of analysis is a power law. Table 2 in Ben-Zion (2008)
lists various examples of power-law distributions of earthquake and
fault quantities. The most established of those are the power-law
distribution of seismic moments (Kagan 1999), which is an alterna-
tive form of the exponential distribution of earthquake magnitudes
in the Gutenberg–Richter law (Gutenberg & Richter 1944), and the
power decay rate of events following a large earthquake referred to
as the Omori–Utsu law (Omori 1894; Utsu et al. 1995).

These laws were claimed to be universal on a global scale, at least
at geologically long time intervals (e.g. Kagan 1999). In this view
the documented discrepancies in observed forms and parameters
of earthquake statistics are attributed to statistical fluctuations and
artefacts of catalogue uncertainties (e.g. Kagan 1999, p. 569). An

alternative approach discussed by Ben-Zion (2008, Sections 2 and
3) considers the universal statistical descriptions to result in part
from averaging data of large spatial domains having different event
populations. If correct, clarifying the existence of different event
populations in relation to physical properties of fault zones and the
crust can increase the ability to extract detailed (region-specific)
information from observed data and improve the understanding of
earthquake physics.

With these goals in mind, Bailey et al. (2009, 2010) analysed pat-
terns of earthquake focal mechanisms in southern California and
found persisting differences in relation to geometrical properties of
the major fault zones. Zaliapin & Ben-Zion (2011) analysed along-
strike symmetry properties of aftershocks in catalogues of 25 fault
zones in California, and established relations between deviations
from generic symmetric distribution and contrasts of seismic veloc-
ities across the faults. See also Rubin & Gillard (2000) and Rubin
(2002). The results are consistent with theoretical expectations on
differences between ruptures on faults that do or do not separate
different elastic solids (e.g. Weertman 1980; Ben-Zion 2001; Am-
puero & Ben-Zion 2008). Yang & Ben-Zion (2009) and Enescu et
al. (2009) showed that parameters of the Omori–Utsu aftershock
decay law in southern California are correlated with the heat flow.
Zaliapin & Ben-Zion (2013a,b) took this further by showing that
there are distinctly different types of seismicity clusters in southern
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Table 1. Statistics of singles, main shocks, aftershocks and foreshocks in the cluster analysis of events with m ≥ 4 in the NCEDC catalogue during
1975–2015.

Magnitude range Singles Families
Main shocks

(= no. of families) Aftershocks Foreshocks
No. Per cent No. Per cent No. Per cent No. Per cent

All events: m ≥ 4 116 228 45.2 19 612 7.6 105 790 41.2 15 363 6.0
4 ≤ m < 5 98 385 47.9 8098 3.9 86 749 42.2 12 197 5.9
5 ≤ m < 6 17 503 36.8 9141 19.2 17 999 37.8 2968 6.2
6 ≤ m < 7 340 9.6 2049 57.7 973 27.4 187 5.3
7 ≤ m < 8 0 0 298 79.5 66 17.6 11 2.9
m ≥ 8 0 0 26 89.7 3 10.3 0 0

California with preferred locations correlated with the heat flow.
These results are consistent with theoretical expectations on prop-
erties of earthquake sequences in regions with different effective
viscosity (Ben-Zion & Lyakhovsky 2006). In the present paper we
generalize the results of Zaliapin & Ben-Zion (2013a,b) to the global
scale.

Our analysis focuses on earthquake clustering—partitioning of
seismicity into groups closer in space and time than expected in
a purely random distribution. Such groups reflect diverse trigger-
ing processes and prominently include traditional aftershock series,
but also swarms and other types of clustering (Zaliapin & Ben-
Zion 2013a; Vidale & Shearer 2006; Vidale et al. 2006; Zhang &
Shearer 2016). Facilitated by high-quality catalogue and problem-
specific statistical techniques, we demonstrated in an earlier study
that the cluster style of seismicity in southern California is closely
related to physical properties of the crust and is changing at the
scale of tens of kilometres (Zaliapin & Ben-Zion 2013b). In par-
ticular, it was shown that there are two dominant types of clusters:
(i) ‘Burst-like clusters’ with a prominently large main shock, small
number of foreshocks and dominance of first-generation offspring.
Such clusters reflect highly brittle rapid failure process in areas with
cold crystalline rocks, decreased fluid content, and low heat flow
production (increased effective viscosity). Burst-like cluster areas
in southern California include the San Jacinto fault zone, Mojave,
Ventura and San Gabriel regions. (ii) ‘Swarm-like clusters’ that
lack a prominent main shock, have increased foreshock activity,
and abundance of secondary, tertiary, etc. offspring. Such clusters
reflect mixed brittle–ductile failure in areas with increased fluids
and heat flow and/or soft sediments (decreased effective viscosity).
Swarm-like cluster areas in southern California include the Salton
Sea and Coso geothermal regions. The quality of data in south-
ern California allowed us to validate the region-specific character
of earthquake clustering by statistical differences in thirteen com-
plementary cluster characteristics, including aftershock/foreshock
intensity, magnitude difference between main shock and the largest
aftershock/foreshocks, b-value, cluster area, duration, etc., all of
which related to the effective viscosity of a region and hence to the
cluster type (Zaliapin & Ben-Zion 2013b, Table 1 and Appendix C).

The above results from southern California demonstrate the exis-
tence of region-specific features that provide important information
on earthquake dynamics and can contribute to improving seismic
hazard assessments. However, extending the results to the global
scale faces the problem of data quality. This is because higher mag-
nitudes of completeness/reporting and earthquake location uncer-
tainties impact cluster identification and lead to multiple artefacts
(Zaliapin & Ben-Zion 2015). In particular, low catalogue quality
blurs the underlying fine structure of earthquake clusters, artificially

making them more swarm-like, and moves some cluster events to
the background mode. Accordingly, working with low-quality cat-
alogues requires developing statistics tools that are robust to the
catalogue uncertainties.

In the following sections we develop such a toolbox, and use
it to reveal strong spatial dependence of global earthquake clus-
tering that is mainly controlled by the local heat flow production.
We confirm the existence of the two primary types of earthquake
clusters—burst-like and swarm-like—and show that burst-like clus-
ters are associated with cold regions (mainly shallow seismicity of
subduction zones), while swarm-like clustering is typical for hot
regions (mainly mid-oceanic ridges). The type of plate-boundary
deformation is also examined and shown to play a secondary role
in determining the cluster style of seismicity. The global results
presented in this study are consistent with our previous regional
findings in southern California based on higher-quality data. The
analysis of possible sources of artefacts for each examined statis-
tics provide results designed to be robust to the known catalogue
uncertainties and deficiencies.

2 DATA A N D M E T H O D S

2.1 Earthquakes

We work with the global catalogue produced by the Northern Cali-
fornia Earthquake Data Center (NCEDC 2015). The examined cat-
alogue covers the period 1/1/1975 to 6/9/2015 and contains 256 993
events. The minimal magnitude used in the analysis is mmin = 4.
This magnitude is higher than the completeness magnitude in many
examined regions, in particular during the earlier times. We demon-
strated (Zaliapin & Ben-Zion 2013a, Appendices D and E) that the
cluster structure estimated by our technique (Section 3) is insen-
sitive to the catalogue incompleteness as well as to the minimal
reported magnitude. Accordingly, some cluster statistics, like the
total number of clusters and partition of events into main shocks,
foreshocks, and aftershocks (see Section 3.6 for definitions) are
fairly robust with respect to the magnitude incompleteness. The
incompleteness however does affect the cluster size distribution, as
discussed in Section 4.2.

We only consider events with depth less than zc = 70 km. The
depth reporting in NCEDC catalogue is highly irresolute: 69 932
events (27.2 per cent) are assigned a depth of 33 km and 61 939
events (24.1 per cent) are assigned a depth of 10 km. Other popular
(default) depth values are 35 km (14 421 events, 5.6 per cent), 30 km
(4899 events, 1.9 per cent), and 5 km (2651 events, 1.0 per cent).
In addition, there is a tendency, especially during earlier times, to
assign depths divisible by 5 km (5, 10, 15, etc.). Our analysis is
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610 I. Zaliapin and Y. Ben-Zion

based on earthquake epicentres and is not affected by the depth
uncertainties.

Fig. 1(a) shows the spatial intensity �(x) of events in the NCEDC
catalogue, in events with magnitude m ≥ 4 per year per 10 000
km2. Appendix B describes the process of producing smooth spatial
maps of different seismic and physical characteristics used in this
study. The intensity varies over several orders of magnitude, from
0.02 to 12.5, with the highest values associated with contracting
subduction zones and lowest values associated with mid-oceanic
spreading ridges. The global spatial distribution of the maximal
observed earthquake magnitude mmax of the examined seismicity
is illustrated in Fig. 1(b). Naturally, the fluctuations of the maxi-
mal observed magnitude are closely related to the seismic intensity
fluctuations. The distribution of hypocentral depth of the examined
earthquakes is shown in Fig. A3(a). Its spatial variations resemble
those for the earthquake intensity and maximal magnitude.

Fig. 1(c) presents the spatial variability of the magnitude com-
pleteness of the examined catalogue. It shows the proportion p5 of
earthquakes with magnitude m ≤ 5, which serves as a proxy to com-
pleteness quality. Specifically, if the number N(m) of events with
magnitude above m is given by the Gutenberg–Richter law

log10 N (m) = a − bm, m ≥ mc (1)

with b = 1 and mc = 4, then p5 = 0.9. Deficiency of events in
small magnitude range results in lower values of p5. Mild fluctu-
ations of the b-value also affect this completeness proxy albeit to
a lesser degree. For instance, if we assume validity of eq. (1) with
mc = 4, then variation of b-values in the range [0.8, 1.2] results in
p5 in the range [0.84, 0.94], with lower b-values corresponding to
lower p5 values. Hence, the main fluctuations of p5 (that goes as
low as 0.5) observed in Fig. 1(c) are primarily due to incomplete-
ness. The analysis suggests that catalogue quality is deteriorated
for oceanic seismicity, relatively far from seismic networks, which
mainly occur in the southern hemisphere.

Fig. 1 illustrates and summarizes the diversity of seismic regimes
and parameters as well as variations in catalogue quality involved
in a global study. The statistics used in our analysis are designed
to be robust with respect to these obstacles and yet still reflect the
essential characteristics of the regional cluster style.

2.2 Heat flow

The employed surface heat flow data is taken from Bird et
al. (2008). The heat flow within the seismically active areas is
mapped in Fig. 2. The distribution of the heat flow over the en-
tire Earth surface is shown in Fig. A1. The heat flow production
is prominently high along the oceanic spreading ridges, reaching
0.3 W m−2.

2.3 Strain rate tensor

We use the global strain rate field modelled by Kreemer et al. (2014).
Specifically, we consider the second invariant I2 of the strain rate
tensor ε̇:

I2 =
√(

ε̇ϕϕ

)2 + (ε̇θθ )2 + 2
(
ε̇ϕθ

)2
(2)

and the tensor style S defined by Kreemer et al. (2014) as:

S = e1 + e2

max (|e1| , |e2|) . (3)

Here ei are the eigenvalues of the strain rate tensor. The strain
rate tensor style S can be used to roughly quantify the type of
displacement into contraction (S < −0.5), strike-slip (0.5 < S <

−0.5), and extension (S > 0.5). The maps of strain rate tensor
second invariant and style are shown in Fig. A2.

2.4 �-Analysis

Any cluster analysis of earthquakes is affected by the existence of
the catalogue lower cut-off magnitude mmin (which may be smaller
than the completeness magnitude mc). For instance, if we analyse
earthquakes with m ≥ mmin = 4, then an earthquake of m = 4 cannot
have recorded aftershocks of a smaller magnitude, while an m = 6
event may have aftershocks with magnitudes 4 ≤ m ≤ 6. To equalize
the magnitude ranges for potential fore/aftershocks of main shocks
with different magnitudes, we sometimes perform �-analysis that
(i) only considers main shocks with magnitude m ≥ mmin + � and
(ii) only considers fore/aftershocks with magnitude within � units
below that of a main shock. The fore/aftershocks detected by this
analysis are called �-fore/aftershocks. The conventional analysis
that considers all events is referred to as regular analysis.

3 E A RT H Q UA K E C LU S T E R S

3.1 Generalized earthquake distance

Consider a catalogue where each event i is characterized by its
occurrence time ti, hypocentre (φι, λi, di), and magnitude mi. We
define the proximity ηij of earthquake j to earthquake i following
Baiesi & Paczuski (2004) as:

ηi j =
{

ti j (ri j )
d 10−bmi , ti j > 0;

∞, ti j ≤ 0.
(4)

Here, tij = tj − ti is the event intercurrence time, which is positive
if event j occurred after event i; rij ≥ 0 is the spatial distance between
the earthquake hypocentres; d is the (possibly fractal) dimension
of the hypocentres or epicentres, and b is the parameter of the
Gutenberg–Richter law (1). The motivation for and properties of this
proximity measure are discussed in Zaliapin & Ben-Zion (2013a,
2015, 2016). In particular, the proximity to the nearest neighbour
is inversely related to the seismic intensity. It is intuitive that the
distance between events is smaller in a high-intensity process where
a larger number of events occupy the same space–time volume; see
Zaliapin et al. (2008) for formal derivations and Zaliapin & Ben-
Zion (2013a) for simulation results.

3.2 Parent-offspring identification

For each event i we identify its unique nearest neighbour (parent)
j with respect to the distance given by eq. (4), and denote for sim-
plicity the nearest-neighbour distance by the same symbol ηij. The
event i is called an offspring of j. According to this definition, each
event (except the first one in the catalogue) has a unique parent, and
also might have multiple offspring.

3.3 Bimodal distribution of the nearest-neighbour distance

Consider the space and time distances between event i and its par-
ent j normalized by the magnitude of the parent event (Zaliapin
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Global analysis of earthquake clusters 611

Figure 1. Spatial distribution of selected statistical characteristics of earthquakes with magnitude m ≥ 4 according to the global NCEDC catalogue during
1975–2015. A point is included in this graph if the circle of radius 100 km centred at the point contains 5 or more earthquakes of magnitude m ≥ 5. Red lines
depict major tectonic faults. Shades correspond to bathymetry and topography. Continents are depicted by grey colour. (a) Earthquake intensity � in events ×
yr−1 × 10 000 km−2 (b) Maximal observed magnitude mmax. (c) Proportion of events with m ≤ 5.
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612 I. Zaliapin and Y. Ben-Zion

Figure 2. Heat flow in the seismically active regions. A point is included in this graph if the circle of radius 100 km centred at the point contains 5 or more
earthquakes of magnitude m ≥ 5. The heat flow values are clipped at H = 0.2 (the maximal reported value is 0.3).

et al. 2008):

Ti j = ti j 10−qbmi ; Ri j = (ri j )
d 10−pbmi ; q + p = 1. (5)

This is convenient because now log ηi j = log Ti j + log Ri j .
Zaliapin et al. (2008) and Zaliapin & Ben-Zion (2013a) demon-
strated that a time-stationary space-inhomogeneous Poisson flow of
events with Gutenberg–Richter magnitudes corresponds to a uni-
modal distribution of (log T, log R) that is concentrated along a line
log10 T + log10 R = const. Observed seismicity, however, shows a
bimodal joint distribution of (log10 T, log10 R), as has been docu-
mented in multiple studies of various regions (e.g. Zaliapin et al.
2008; Zaliapin & Ben-Zion 2011, 2013a,b, 2015, 2016; Gu et al.
2013; Davidsen et al. 2015; Reverso et al. 2015; Schoenball et al.
2015). One of the modes is similar to that observed in a Poisson pro-
cess and corresponds to background events, while the other consists
of clustered events located considerably closer in time and space to
their parents than expected in a Poisson process (see Fig. 4).

3.4 Separating the background and cluster modes: a
Gaussian mixture model approach

Analysis of statistical properties of the background and cluster
modes is one of the main tools of this study (see Section 4.2).
The bimodality of the earthquake distance distribution (Figs 4b and
d) allows one to use a suitably chosen nearest-neighbour threshold
η0 to formally attribute each event to either the background (if ηij

> η0) or cluster (if ηij < η0) mode. The threshold selection is done
here according to a Gaussian mixture model with two modes.

A two-mode Gaussian mixture model assumes that sample xi

εRm, i = 1, . . . , n comes from the distribution

F(x) = wN (x ; μ1, �1) + (1 − w)N (x ; μ2, �2) , (6)

where w is the mixture weight of the first mode and N(x;μ,�)
denotes the Gaussian (Normal) distribution, with mean μ that is a
vector with m components and variance � that is a positive-definite
m × m matrix. The estimation of such model can be done using the
Expectation-Maximization algorithm (Dempster et al. 1977).

In our setting, we can either apply a 1-D Gaussian mixture model
to the log-distance log10η or a 2-D Gaussian mixture model to
the logarithmic components (log10 T, log10 R). Both approaches

give very close results. The details of numerical implementation
are discussed in Hicks (2011). A model assigns to each event the
probabilities w and (1−w) of being attributed to one or the other
mode. We make the final mode assignment according to the maximal
probability v = max (w, 1−w). This corresponds to choosing the
mode separation threshold η0 that equalizes the densities of the two
estimated Gaussian modes:

N (η0; μ1, �1) = N (η0; μ2, �2). (7)

The background (cluster) events now can be equivalently defined
by the condition ηij > η0 (ηij ≤ η0). In 1-D case, the position ηbg

of the background is defined as the mean value of the estimated
rightmost Gaussian mode: ηbg = max (μ1, μ2). In 2-D case we
define ηbg = max (μ1[1]+μ1[2], μ2[1]+μ2[2]), where the notation
[i] refers to the ith component of a vector. Alternatively, one can
define ηbg as (a) the mean generalized earthquake distance ηij of
the background events, or (b) the mean generalized distance of
events that happened at large spatial distance from their parent (say,
R > 5, 50). The last approach is motivated by the observation that the
majority of events at large spatial distances from their parent belong
to the background mode (see Fig. 4). These alternate approaches
give results (not shown) that are very close to those obtained with
our main method.

The regional mode separation quality Q is defined as the average
value of the mode assignment probability v = max (w, 1 − w)
over all events in a region. According to this definition, the quality
is constrained by 0.5 ≤ Q ≤ 1, where Q = 1 corresponds to a
perfect separation (each event is attributed to one of the modes
with probability 1) and Q = 0.5 corresponds to an indeterminate
separation (each event is attributed to either mode with the same
probability of 0.5).

3.5 Cluster identification

Connecting each earthquake in the catalogue to its nearest neigh-
bour (parent) according to the nearest-neighbour distance η of eq.
(4) produces a single cluster (spanning network) that contains all
examined events. From a graph-theoretical perspective, this cluster
is a tree graph, which means that it does not have loops (Zaliapin
& Ben-Zion 2013a; Baiesi & Paczuski 2004). Removing all links
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that correspond to large parent-offspring distances, defined by the
condition η ≥ η0, creates a spanning forest—a collection of trees
each representing a separate earthquake cluster. The forest contains
many single-event trees, which we call singles. The other clusters
contain multiple events and are called families.

3.6 Event classification

In each family, the earthquake with the largest magnitude is called
main shock. If there are several earthquakes with same largest mag-
nitude within a family, the first one is considered to be the main
shock, so each family has a single main shock. All events in a fam-
ily that occurred after the main shock are called aftershocks. All
events that occurred prior to the main shock are called foreshocks.
Each single is also considered to be a main shock (that has no
foreshocks and aftershocks).

3.7 Parameters

In this study we use event epicentres rather than hypocentres be-
cause the depth coordinates are often less accurate than those of the
epicentres, and location errors lead to various analysis artefacts as
discussed in detail by Zaliapin & Ben-Zion (2015). In addition, we
fix b = 1, d = 1.3 and p = 0.5 in eqs (4) and (5). Zaliapin & Ben-
Zion (2013a) showed that the estimated cluster structure is fairly
robust with respect to the values of these parameters. Accordingly,
the main conclusions of this study are not sensitive to the precise
parameter values.

We refer to Zaliapin & Ben-Zion (2013a) for further details on
and examples of performance of our cluster technique, as well as
detailed analysis on its stability. The statistical artefacts of catalogue
uncertainties that affect cluster analysis based on parent-offspring
identification are examined in Zaliapin & Ben-Zion (2015).

4 R E S U LT S

4.1 Basic characteristics of seismicity

For the purpose of this study, a point on the Earth surface is denoted
seismically active if there are 5 or more events with magnitude m ≥
5 within 100 km of this point according to the NCEDC catalogue
during 1975–2015. The total Earth surface area is 510.1 × 106 km2;
about 9 per cent of this area, or 44.9 × 106 km2, is seismically active.
Fig. 1 shows basic characteristics of seismicity in the active areas:
(panel a) Intensity, in event/(year × 10 000 km2), of earthquakes
with magnitude m ≥ 4, (panel b) maximal observed magnitude and
(panel c) proportion of events with magnitude m ≤ 5 which serves as
a proxy for catalogue completeness (see discussion in Section 2.1).

Next we relate the three characteristics illustrated in Fig. 1 to the
type of lithospheric deformation. Fig. 3(a) displays the partitioning
of seismically active area with respect to values of the strain rate
tensor style S and second invariant I2. The analysis is done within
0.5◦ × 0.5◦ cells that tile the Earth surface. About half of the
active area corresponds to lowest values of the second invariant
(I2 < 100) attributed to subduction zones and other contraction
environments. The largest 10 per cent of the values of the second
invariant (I2 > 1000) are associated with mid-ocean ridges and
other extension environments. The partition of seismic area into
different tensor styles is fairly independent of the values of I2—
approximately 60 per cent in contraction, 20 per cent in strike-slip
and 20 per cent in extension.

Fig. 3(b) shows the average value of seismic intensity for events
with m ≥ 4 in the same coordinates (S, I2). The highest average
intensity of � ≈ 3 events per year per 10 000 km2 is exclusively
observed within contracting environments: S < −0.75, I2 > 100.
The lowest average intensity, 0.2 < � < 1, is observed within
extending environments. The intensity in strike-slip zones is in-
termediate around and slightly below � = 1. The highest seismic
activity typically occurred in subduction zones, which explain a
close resemblance in the patterns of seismic intensity (Fig. 3b) and
that of the average hypocentral depth (Fig. A4a). The average heat
flow has the highest values (H > 0.25) exclusively within extension
environments—along the mid-oceanic spreading ridges (Fig. 3c).
The results in Figs 3(b) and (c) emphasize that the spatial distri-
bution of seismic intensity is inversely related to that of the heat
flow. We also perform Spearman’s rank correlation analysis (see
Appendix C for definition and discussion) and generalized linear
model (GLM) analysis (see Appendix D) for earthquake intensity
versus heat flow H and strain rate tensor parameters S and I2. The
results, summarized in Tables 5, 6 and Figs D1(a), (b) and (c), cor-
roborate the observations of Fig. 3. We show below that the heat flow
production also governs the space-dependent style of earthquake
clustering.

Fig. 4 presents the distribution of the generalized earthquake
distance η of eq. (4) and the joint distribution of its normalized space
and time components (R, T) of eq. (5) for the earthquakes from areas
with low (H < 0.1) and high (H > 0.25) heat flow value. Panels
(a, c) show the joint two-dimensional density of (R, T) estimated for
all earthquakes in areas with the indicated heat flow level. Colours
represent the relative number of points with given values of (R, T),
as indicated in the colourbar on the right. The integral over the entire
distribution is 1. Panels (b, d) show the estimated density for the
nearest-neighbour distance η on a logarithmic scale—the histogram
values for log10η divided by the total number of examined events—
so that the integral over the distribution is 1. The background and
cluster modes are seen clearly in both cases. However, there exist
several notable differences in the cluster style of earthquakes in
high versus low heat flow regions: (i) The typical position ηbg of
the background mode in low heat flow regions (log10ηbg ≈ −4.7)
is lower than that in high heat flow regions (log10ηbg ≈ −4.0). This
reflects higher earthquake intensity in low heat flow regions that
have predominantly contracting and transform deformation style,
and corroborates our earlier observations in Figs 3(b) and (c). (ii)
The proportion of background events in low heat flow regions is
lower than that in high heat flow regions. Accordingly, the proportion
of clustered events is higher in low heat flow regions. (iii) The
time decay of cluster events is faster in high heat flow regions,
leading to stronger time separation between the background and
cluster modes. This can be seen by comparing how the cluster
mode is blending with the background mode in panels (a) and
(c) of Fig. 4. The offspring duration is longer in low heat flow
regions, which is reflected by a horizontally elongated shape of the
cluster mode in Fig. 4(a), as opposed to a more confined location
of the cluster mode in high heat flow regions in Fig. 4(c). (iv)
Proportion of repeaters—events that happen at short spatial and
large temporal distances from the parent and hence occupy the
lower right corner of the (T, R) plots in Figs 4(a) and (c)—is larger
in high heat flow regions. This observation is further illustrated
in Fig. 5 that shows the distribution of rescaled time to parent T
for offspring within two parent rupture lengths to the parent. In
cold regions (panel a) the cluster and background modes are largely
overlapping at these short distances to parent. The background mode
is centred at about log10T = −3 and has lower intensity and spread
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614 I. Zaliapin and Y. Ben-Zion

Figure 3. Average values of selected statistics as a function of strain rate tensor style S and second invariant I2. (a) Seismogenic area A [km2] (the values are
reported on a logarithmic scale). (b) Seismic intensity � [event yr–1 10 000 km–2] (the values are reported on a logarithmic scale). (c) Heat flow H [W m–2].

compared to that of the clustered mode. The latter is centred at
log10T = −6 and has much larger spread, interpreted as slow decay
of intensity of offspring earthquakes. In hot regions (panel b), on the
contrary, the two modes are well separated. The background mode

is centred at about log10T = −2 (lower intensity of background
events compared to those in cold regions), and has notably higher
intensity than the cluster mode. The cluster mode is centred at about
log10T = −6.5 and has smaller spread than that of the cluster mode
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Global analysis of earthquake clusters 615

Figure 4. Generalized earthquake distance η of eq. (4) and its normalized space and time components (T, R) of eq. (5) in regions with different level of heat
flow H. (a, b) Earthquakes in regions with low heat flow, H < 0.1. (c, d) Earthquake in regions with high heat flow, H > 0.25. (a, c) Join distribution of the
rescaled components (T, R) of the earthquake nearest-neighbour distance. (b, d) Distribution of the values of the nearest-neighbour distance η. Black diagonal
lines in panels (a, c) depict levels of constant distance η (from top to bottom): –log10η = 4, 5, 6, 7, 8.

in cold regions, suggesting faster decay of intensity of offspring
earthquakes.

4.2 Cluster and background modes

The results of Figs 3–5 demonstrate that earthquake clustering style
is space-dependent and related to the heat flow production. We now
complement these analyses by additional statistics involving the
earthquake nearest-neighbour distances. Specifically, we apply a
1-D Gaussian mixture model (Section 3.3) to the nearest-neighbour
distances log10η of events within circles of radius r = 200 km
centred at the epicentres of all examined earthquakes. The model is
used to estimate the space-dependent threshold η0 that separates the
cluster and background modes, partition the events into cluster and
background populations, estimate the characteristic position ηbg of
the background mode, and assess the quality Q of mode separation.
Fig. 6 shows the spatial maps of the position ηbg of the background
mode (panel a) and the proportion of events in the background mode

(panel b). The map of the quality Q of the mode separation is shown
in Fig. A3(c).

The location of the background mode is primarily controlled by
the absolute intensity of the background events (Zaliapin et al. 2008;
Zaliapin & Ben-Zion 2013a). This explains the inverse relation be-
tween the background location (Fig. 6a) and earthquake intensity
(Fig. 1a). Furthermore, the values of ηbg follow a three-modal distri-
bution, clearly outlining the major tectonic environments in agree-
ment with Fig. 3(b). The highest earthquake intensity and lowest
values of ηbg < −4.5 are observed within convergent environments.
The lowest earthquake intensity and largest values of ηbg > −3.75
are observed along divergent boundaries. Intermediate values of
earthquake intensity and background position −4.5 < ηbg < −3.55
are observed along transform boundaries. Fig. A3(b) shows the
worldwide spatial distribution of a related feature—the threshold
η0 that separates the background and cluster mode, according to a
Gaussian mixture model.

The other examined cluster characteristics exhibit similar spatial
variations. In particular, divergent environments have uniformly
increased background proportions pbg > 0.7 (Fig. 6b) and high
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616 I. Zaliapin and Y. Ben-Zion

Figure 5. Distribution of the rescaled time to parent T of eq. (5) for offspring that occurred within two parent rupture distances from the parent. (a) Cold
regions, H < 0.2. (b) Hot regions, H > 0.2.

mode separation quality Q ≈ 0.95 (Fig. A3c). Convergent envi-
ronments exhibit much larger spatial variability and intermittence
in the values of background proportions pbg and separation quality
Q. For instance, Fig. 6(b) shows that in the Northwestern part of
the Pacific plate, along the Kuril-Kamchatka and Japan trenches,
the background proportion varies widely in the range 0.2–0.7 over
a scale of hundreds of kilometers that coincides with the spatial
resolution of our analysis. Another example of highly intermit-
tent spatial behaviour is the Persia-Tibet-Burma orogeny in the
Eurasian plate. Overall, however, the average proportion of the
background events in transform and convergent environments is
lower than in divergent environments, as illustrated in Fig. 7(b).
Similarly, the mode separation quality Q shows high intermittency
within transform and convergent boundaries. It changes in the range
between 0.9 and 0.95 with rather sharp spatial gradients (Fig. A3c),
and has overall lower values compared to divergent zones (Fig.
7c). The observed clear spatial variations in the cluster parame-
ters are not spurious but governed by local tectonic and physical
settings. This was shown in a local study for southern California
(Zaliapin & Ben-Zion 2013b); a detailed demonstration of such
correlations in the global setting is outside the resolution of this
study. Fig. 7 compares the three examined parameters of seismic
clustering as functions of strain rate tensor’s style S and second
invariant I2. The comparison of earthquake cluster statistics with
heat flow and strain rate tensor parameters using Spearman’s cor-
relation and GLM approach is illustrated in Tables 5, 6 and Figs
D1(d)–(o). This further documents the coupling between the exam-
ined cluster characteristics and their correlation with the heat flow
(cf. Fig. 3c).

4.3 Properties of earthquake clusters

The 256 993 events of the examined catalogue have been partitioned
into 135 840 clusters according to the procedure of Section 3. Of
those clusters, 116 228 (85.6 per cent) are singles and 19 612 (14.4
per cent) are families with sizes ranging from 2 to 6584. Tables 1 and
2 summarize the individual event classification (into singles, main
shocks, foreshocks, and aftershocks) in the regular and �-analysis,
respectively.

Fig. 8(a) shows the distribution of cluster size N for clusters in
areas with high (H > 0.2) and low (H < 0.2) heat flow levels. The
distribution tail in both cases can be approximated by a power law

S (N ) = Prob [cluster size > N ] ∝ N−α (8)

with power index α ≈ 2 in hot areas and α ≈ 1 in cold areas. The
value of α ≈1 was previously reported for the cluster size distri-
bution in southern California (Zaliapin & Ben-Zion 2013a). The
observed difference in the cluster size distributions implies that (i)
cold areas have much larger clusters—indeed, the maximal cluster
size in cold areas is max (N | H < 0.2) = 6584 while the maximal
cluster size in hot areas is 35 times smaller, max (N | H ≥ 0.2) =
186; and (ii) the proportion of clusters with size N > 10 is larger
in cold areas. Recall that the cluster size statistically increases with
the maximal observed magnitude, since larger events have more
offspring (e.g. Utsu 1970); it also increases as the magnitude of
completeness decreases. Accordingly, the dominance of large clus-
ters in cold regions observed in Fig. 8(a) is explained by statistically
higher maximal magnitude (Fig. 1b) and better quality of catalogues
(Fig. 1c) in cold regions compared to hot ones.
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Global analysis of earthquake clusters 617

Figure 6. Global maps of selected parameters of seismic clustering. (a) Average nearest-neighbour distance log10ηbg in the background mode. (b) Proportion
of events in the background mode.

To eliminate effects related to differences in the largest regional
magnitude, we compare the cluster size distributions in relatively
hot and cold areas using �-analysis with � = 2 (Fig. 8b). This
approach equalizes the cluster sizes with main shocks of different
magnitudes (Zaliapin & Ben-Zion 2013a), and hence should elim-
inate the discrepancy caused by different levels of seismic activity
in cold and hot regions. The results indicate that the cluster size is
stochastically larger in cold area. Recall that a random variable X
is said to be stochastically larger than Y if the survival function of
X is larger than that of Y for all arguments. Finally, we compare the
cluster size distribution for clusters with intermediate-magnitude
main shocks. As shown in Fig. 8(c), the size of clusters with main
shock magnitude m < 5 is stochastically larger in hot regions.
Similarly, the cluster size is stochastically larger in hot regions for
clusters in all magnitude ranges below m = 6 (not shown). In ad-
dition, the number of foreshocks and aftershocks per cluster with
main shock magnitude m < 6 is significantly higher in hot regions
(not shown).

In summary, stochastically larger cluster size in cold regions is
related to the presence of large-magnitude clusters with main shock

magnitude m > 6. At the same time, the size of intermediate-
magnitude clusters (with main shock magnitude m < 6) is stochas-
tically larger in hot regions. These two observations are consistent
with the finding of Zaliapin & Ben-Zion (2013b) in southern Cal-
ifornia, who also pointed out the difference in clustering styles of
the largest regional events and the rest of earthquakes, and reported
larger cluster size of intermediate-magnitude clusters in hot regions.

As a particular case of small-cluster size analysis, we notice that
the proportion pS of smallest clusters—singles—among all detected
clusters is higher in cold areas: pS(H < 0.2) = 0.86 vs pS(H ≥ 0.2)
= 0.80. The observed difference in proportions is highly signif-
icant, with p-value being essentially zero (p < 10−16) according
to the Fisher test (Agresti 2007). This effect is noteworthy, since
the higher maximal magnitude, better quality of catalogues, and
lower completeness magnitude in cold regions should decrease the
number of singles (e.g. Zaliapin & Ben-Zion 2015). On the other
hand, the probability of being a single is higher for small-magnitude
events (e.g. it is more probable for m = 4 event to have no offspring
than for m = 7). Accordingly, an increased detected proportion
of small-magnitude events in cold regions (Fig. 1c) might inflate
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618 I. Zaliapin and Y. Ben-Zion

Figure 7. Statistics of background and cluster modes as functions of strain rate tensor’s style S and second invariant I2. (a) Average nearest-neighbour distance
log10ηbg in the background mode. (b) Proportion of background events pB. (c) Quality Q of background/cluster mode separation.

the proportion of singles. We demonstrate that this effect is not
ultimately responsible for an increased proportion of singles in
cold regions by repeating the analysis within each magnitude in-
terval of length 0.1: [4.0, 4.1), [4.1, 4.2), etc. The proportion of

singles is higher in cold regions (not shown) for each magnitude
interval from [4.0, 4.1), to [5.5, 5.6). Table 3 summarizes the re-
sults of a formal statistical testing that uses magnitude intervals of
length 0.5 and confirms the statistical significance of the observed
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Global analysis of earthquake clusters 619

Table 2. Statistics of singles, main shocks, aftershocks and foreshocks in the cluster �-analysis of events with m ≥ 2 in the NCEDC catalogue during
1975–2015.

Magnitude range Singles Families
Main shocks

( = no. of families) Aftershocks Foreshocks
No. Per cent No. Per cent No. Per cent No. Per cent

All events: m ≥ 4 404 1.9 2309 10.9 16 165 76.3 2314 10.9
4 ≤ m < 5 – – – – 9280 88.4 1,216 11.6
5 ≤ m < 6 – – – – 6067 86.9 913 13.1
6 ≤ m < 7 390 11.8 1999 60.3 750 22.6 174 5.2
7 ≤ m < 8 14 3.7 284 75.9 65 17.4 11 2.9
m ≥ 8 0 0 26 89.7 3 10.3 0 0
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Figure 8. Distribution of cluster size N in regions with high (H > 0.2, red solid line) and low (H < 0.2, blue dashed line) values of heat flow. For families, the
heat flow value is estimated at the main shock epicentre. The y-axis shows the survival function S(N) = Prob.[cluster size > N]. The lines that correspond to
power laws S(N) ∝ N−α with indices α = 1 and α = 2 are shown for visual convenience. (a) Regular analysis, all clusters. (b) Delta analysis with � = 2. (c)
Regular analysis, clusters with main shock magnitude m < 5.

differences for events with magnitudes from 4.0 to 5.5. This analysis
also demonstrates that events with m > 5.5 in cold regions become
singles less often than those in hot regions (not shown). It is difficult
to conclude with the existing data whether this effect is related to
the inferior catalogue quality in hot regions or is a real physical
property.

Fig. 9(a) shows the proportion pS of singles among families in
different regions. The proportion varies between 0.7 and 0.95. The
highest values (pS > 0.9) are typically observed within cold regions,
while lowest values (pS < 0.75) almost exclusively belong to hot
areas. A closer examination reveals that the proportion of singles
exhibits abrupt spatial fluctuations in some areas (e.g. mid-ocean
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620 I. Zaliapin and Y. Ben-Zion

Table 3. Testing the hypothesis H0: Proportion of singles among the clusters is the same in cold and hot regions.

Magnitude Cold regions, H < 0.2 Hot regions, H ≥ 0.2 Fisher test p-value Decision at 0.01 level
No. singles/clusters Prop. singles No. singles/clusters Prop. singles

4.0 ≤ m < 4.5 48 085/49 906 0.963 4216/4422 0.953 0.001 Reject H0

4.5 ≤ m < 5.0 39 654/44 655 0.888 6430/7500 0.857 7 × 10−14 Reject H0

5.0 ≤ m < 5.5 12 238/16 872 0.725 2477/3638 0.681 9 × 10−8 Reject H0

ridges) over hundreds of kilometres. These fluctuations are caused
by local tectonic and physical settings, such as transition from trans-
form to extension faulting, but are not the focus of this study. The
relation between the proportion of singles and heat flow is further
illustrated in Fig. 10(a) that shows pS as a function of strain tensor
parameters (S, I2). The large-scale averaging used in this analysis
clearly demonstrates an increased proportion of singles within cold
areas. The comparison of pS with heat flow and strain rate ten-
sor parameters using Spearman’s correlation and GLM approach is
summarized in Tables 5, 6 and Figs D1(p)–(r).

4.4 Foreshocks and aftershocks

The global spatial distribution of the proportion pF of foreshocks
among foreshocks and aftershocks is shown in Fig. 9(b). The pro-
portion is visibly higher in areas with high heat flow, with typical
values pF > 0.2, while in areas with low heat flow the typical propor-
tion is very small, pF < 0.1. The increased production of foreshocks
in hot regions is confirmed by the analysis of Fig. 10(b) that shows
the value of pF averaged for different combinations of strain rate
tensor’s style S and second invariant I2. This result corroborates the
earlier regional finding of Zaliapin & Ben-Zion (2013b) that the
number and proportion of foreshocks increases with the heat flow
in southern California, the observation of McGuire et al. (2005) on
large proportion of foreshocks within the swarms along the Pacific
Rise Transform fault, as well as findings of Kagan et al. (2010) and
Chu et al. (2011) based on fitting a branching model to the global
seismicity.

Spatial patterns similar to those reported in Figs 9(a) and (b) are
also seen for other examined cluster characteristics. For instance,
Fig. A3(d) shows a worldwide map of the aftershock magnitude gap
�A defined for families with aftershocks as the difference between
the magnitudes of the main shock and the largest aftershock. This
analysis is done for all families with main shock magnitude m ≥ 5.
The gap is generally larger within cold regions, with typical value of
�A≈ 0.8, while in hot regions it is typically smaller, �A≈ 0.55. This
observation is corroborated in Fig. 10(c) that shows the aftershock
magnitude gap as a function of strain rate tensor parameters (S, I2);
the domain of low gap values is similar of that of high heat flow
shown in Fig. 3(c). The comparison of pF and �A with heat flow
and strain rate tensor parameters using Spearman’s correlation and
GLM approach is summarized in Tables 5, 6 and Fig. D1(s)–(x).

We note that the values of the aftershock magnitude gap reported
here are lower than the value �A ≈ 1 suggested by the Båth law (Båth
1965; Shcherbakov & Turcotte 2004). This deflation is artificial
and is due to the fact that we consider families with main shock
magnitude m ≥ 5, which is only one unit above the magnitude
cut-off mmin = 4 selected for this study. Notably, the difference in
the magnitude gap �A between hot and cold areas is only seen
for intermediate-magnitude clusters with m < 6; the difference
disappears for large-magnitude clusters with m > 6 (results not
shown).

The magnitude gap is affected by the catalogue completeness
magnitude, since a higher completeness magnitude leads to smaller

observed values of �A (while clusters with larger magnitude gap
may artificially become singles). Hence, the reported difference in
magnitude gap might be influenced to some extent by inferior cata-
logue quality in hot areas. However, Zaliapin & Ben-Zion (2013b)
reported lower magnitude gap in hot regions in a local study in
southern California, where the quality of catalogues is comparable
in both cold and hot regions. We therefore believe that the magni-
tude gap difference between hot and cold areas is a real phenomenon
that will be confirmed in future studies with better catalogue
quality.

4.5 Structure of earthquake families

Consider a tree T that represents an earthquake family as described
in Section 3. The tree consists of a collection of vertices V = {vi},
i = 1,. . . , N each of which represents an earthquake, and edges E
= {ei}, i = 2, . . . , N such that edge ei connects earthquake i to
its parent that also belongs to the tree T. Here we index the family
earthquakes in the order of their occurrence time: i < j if and only if
ti < tj. By construction (see Section 3), the parent of the first event
in the family does not belong to the same family, and hence the first
event does not have an associated edge within T. All other events
have a single parent from the same family. Hence each tree consists
of N vertices and N−1 edges. We refer to the first event in the family
as the root. Denote by C(i) the number of children of vertex i within
T, and by Np = #{i: C(i) > 0} the number of parental vertices
within T. We consider two statistics of a time-oriented rooted tree
that represent an earthquake family: the average family branching
B and the average leaf depth d (Zaliapin & Ben-Zion 2013b). The
average family branching B is the average number of offspring per
parental vertex of the tree T:

B = 1

Np

∑
i

C(i). (9)

The average leaf depth d is the average number of edges between
a leaf and the tree root. Namely, if di denotes the number of edges
between vertex i and the tree root, then

d = 1

N − Np

∑
i :C(i)=0

di . (10)

It is natural to expect the leaf depth and family branching to be
negatively correlated. An intuitive justification for such reciprocal
relation comes from the observation that for a tree with constant
branching and leaf depth, that is with C(i) = C given that C(i) > 0
and di = D given that C(i) = 0, we have N − Np = CD.

Zaliapin & Ben-Zion (2013b) showed that the values of B and
d are strongly coupled with the heat flow in southern California.
Specifically, the average leaf depth increases while the average
branching decreases as the heat flow increases. The same general
trend is observed on the global scale. Fig. 11 shows the values of d
and B averaged for different family sizes N in hot and cold regions.
It is seen that the average leaf depth d is significantly larger, and the
family branching B is significantly smaller, in hot areas compared
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Global analysis of earthquake clusters 621

Figure 9. Global spatial distribution of selected earthquake cluster statistics. (a) Proportion pS of singles among regular clusters. (b) Proportion pF of foreshocks
among foreshocks and aftershocks. (c) Average leaf depth corrected for cluster size, dN, for families with size 5 ≤ N ≤ 20.

to cold areas. We also notice that (i) the difference between hot and
cold regions (difference between red and blue lines) is increasing
with the family size and (ii) the values of both statistics increase
with the family size.

Next we focus on the spatial distribution of the average leaf depth
d and family branching B. The values of both statistics depend on
the family size (Fig. 11), which can contaminate spatial analysis
as the family size N significantly varies from region to region, as
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622 I. Zaliapin and Y. Ben-Zion

Figure 10. Average values of selected cluster statistics as a function of strain rate tensor’s style S and second invariant I2. (a) Proportion pS of singles among
clusters. (b) Proportion pF of foreshocks among foreshocks and aftershocks. (c) Aftershock magnitude gap �A. (d) Average leaf depth corrected for cluster
size, dN, for families with size 5 ≤ N ≤ 20.
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Figure 11. Average leaf depth d (a) and family branching B (b) as a function of family size N for regions with high (H > 0.2, red solid line and circles) and
low (H < 0.2, blue dashed line and squares) values of the heat flow H. Notice positive trend in both examined characteristics with family size N.

documented in Fig. 8. A least-square regression analysis suggests
that the examined statistics have the following relation to the family
size N in the intermediate size range 5 ≤ N ≤ 20:

log10d = 0.35 log10 N + dN , log10 B = 0.5log10 N + BN , (11)

where dN and BN are respective (non-Gaussian) regression errors
with zero mean. Fig. 12 confirms that the average values of dN and
BN are fairly independent of the family size in the range 5 ≤ N
≤ 20. By regression construction, the error variables dN and BN

describe variability of the initial statistics d and B, respectively, not
explained by the family size N. Fig. 9(c) show the global spatial
distribution of dN for families with sizes 5 ≤ N ≤ 20. This analysis
confirms our earlier observation: despite some geographic fluctu-
ations cold regions have a typical value log10 dN ≈ −0.05 that is
consistently smaller than a typical value of the hot regions, log10 dN

≈ 0.15. The spatial distribution of BN (Fig. A3e) has an inverted
pattern: despite some geographic fluctuations cold regions have a
typical value log10 BN ≈ 0 that is consistently larger than a typi-
cal value of hot regions, log10 BN ≈ −0.15. Figs 10(d) and A4(b)
show the average values of dN and BN, respectively, as functions of
strain rate tensor parameters S and I2. The comparison of dN and BN

with heat flow and strain rate tensor parameters using Spearman’s

correlation and GLM approach is summarized in Tables 5, 6 and
Figs D1(y)–(ad). The results confirm that heat flow exerts the pri-
mary control on the values of these two statistics.

5 D I S C U S S I O N

Clarifying whether earthquake dynamics follows universal laws or
exhibits different forms related to physical properties of the litho-
sphere is among the main problems of statistical seismology. This
study supports earlier results mentioned in the introduction on the
existence of non-universal region-specific behaviour of seismic-
ity. This is done by extending the analysis of Zaliapin & Ben-Zion
(2013a,b) of earthquake clusters in southern California to the global
scale using data from the NCEDC worldwide catalogue for the
period 1975–2015. One general difficulty in demonstrating robust
differences in properties of earthquakes in different regions is varied
quality of seismic catalogues in different areas. This problem may
be overcome by applying techniques and parameters not sensitive
to variable location errors and completeness magnitudes (Zaliapin
& Ben-Zion 2015). We return to this issue below.

We use the nearest-neighbour approach (Baiesi & Paczuski 2004;
Zaliapin et al. 2008; Zaliapin & Ben-Zion 2013a) to partition the
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624 I. Zaliapin and Y. Ben-Zion

Figure 12. Average leaf depth dN corrected for cluster size (panel a) and family branching BN corrected for cluster size (panel b) as a function of family size
N for regions with high (H > 0.2, red solid line and circles) and low (H < 0.2, blue dashed line and squares) values of the heat flow H. Notice the absence of
N-dependent trend in both examined characteristics with family size for the intermediate range 5 ≤ N ≤ 20.

earthquakes reported in the NCEDC global catalogue into individ-
ual clusters. We then compare the worldwide space distribution of
various cluster statistics with global heat flow production (Bird et
al. 2008) and style of lithospheric deformation indicated by an es-
timated strain rate tensor (Kreemer et al. 2014). Our comparison is
based on (i) spatial maps of selected characteristics in seismically
active regions (Figs 1, 2, 6 and 9), (ii) averaged values of the ex-
amined characteristics as a function of the strain rate tensor style S
and second invariant I2 (Figs 3, 7 and 10), (iii) Spearman rank cor-
relation analysis (Table 5, Appendix C) and (iv) Generalized Linear
Model analysis (Table 6, Fig. D1).

We demonstrate that multiple statistics of earthquakes and seis-
micity clusters have spatially dependent distribution, tightly corre-
lated with the global heat flow production: (1) earthquake intensity
� (Figs 1a, 3b and D1a); (2) average nearest-neighbour earthquake
distance ηbg within the background mode (Figs 4, 6a, 7a and D1d),
(3) proportion pB of background events (Figs 4, 6b, 7b and D1g),
(4) quality Q of background/cluster mode separation (Figs 4, A3c,
7c and D1j); (5) threshold η0 that separates the background and
cluster modes (Figs 4, A3b and D1m); (6) rate of temporal de-
cay of offspring events (Figs 4 and 5); (7) intensity of repeaters
(Fig. 5); (8) Cluster size of intermediate magnitude (m < 6) main

shocks (Fig. 8); (9) proportion pS of singles among regular families
(Figs 9a, 10a and D1p); (10) proportion pF of foreshocks among
foreshocks and aftershocks (Figs 9b, 10b and D1s); (11) average leaf
depth corrected for the family size, dN (Figs 9c, 10d, 11a, 12a and
D1y); (12) average family branching corrected for the family size,
BN (Figs A3e, A4b, 11b, 12b and D1ab) and (13) aftershock mag-
nitude gap �A (Figs A3d, 10c, D1y). The results are summarized in
Tables 4–6.

The cluster structure and statistics estimated by our technique
are subject to artefacts related to catalogue uncertainties (Zaliapin
& Ben-Zion 2015). We address potential effects of catalogue in-
completeness, varying earthquake intensity, and maximal magni-
tude on each of the examined statistics and design the analysis
to minimize the possible artefacts. Notably, some of our obser-
vations (e.g. increased size of small clusters in Fig. 8c and de-
creased proportion of singles in Figs 9a and 10a) demonstrate a
trend that goes against possible artefacts of catalogue uncertain-
ties. Furthermore, the results of this study are consistent with those
of a local analysis of southern California (Zaliapin & Ben-Zion
2013a,b) obtained with a high quality catalogue (median location
error of 500 m) by Hauksson et al. (2012) and much lower min-
imal magnitude of analysis, mmin = 2. The combination of our
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Table 4. Summary of examined earthquake and cluster statistics.

Statistic Average valuea in Section Figures
Cold regions Hot regions

(H < 0.2) (H > 0.2)

Earthquake intensity, � 1.36 0.33 2.1, 4.1 1a, 3b
Background nearest-neighbour distance, log10(ηbg) −4.44 −3.91 4.2 4, 6a, 7a
Proportion of background events, pbg 0.57 0.67 4.2 4, 6b, 7b
Quality of mode separation, Q 0.93 0.96 4.2 4, A3c, 7c
Threshold between background and cluster modes, log10(η0) −5.40 −5.07 4.2 4, A3b
Rate of temporal decay of offspring low high 4.1 4, 5
Intensity of repeaters low high 4.1 5
Cluster size, N (for main shocks m < 6) 1.28 1.44 4.3 8
Proportion of singles, pS 0.87 0.82 4.3 9a, 10a
Proportion of foreshocks, pF 0.19 0.33 4.4 9b, 10b
Aftershock magnitude gap, �A 0.79 0.67 4.4 10c, A3d
Size-corrected leaf depth, dN −0.02 0.07 4.5 9c, 10d, 11a, 12a
Size-corrected branching, BN −0.07 −0.16 4.5 11b, 12b, A3e, A3b
aThe average values are given here to illustrate the trend of changes between cold and hot zones. All reported differences are highly
significant according to ANOVA test (not shown). The average differences reported here are typically lower than those observed for
individual hot/cold regions in the worldwide maps and maps in the strain rate tensor coordinates (S, I2).

Table 5. Spearman’s correlation between the examined cluster statistics and heat flow, deformation type.

Variable Heat flow, H Tensor style, S Strain rate second invariant, I2

Earthquake intensity, � −0.38a −0.40 0.12
Background nearest-neighbour distance, log10(ηbg) 0.46 0.43 0.001 (0.88)
Proportion of background events, pbg 0.23 0.07 0.16
Quality of mode separation, Q 0.34 0.27 0.09
Threshold between background and cluster modes, log10(η0) 0.25 0.30 −0.10
Proportion of singles, pS −0.29 −0.21 −0.04 (10−7)
Proportion of foreshocks, pF 0.38 0.19 0.37
Aftershock magnitude gap, �A −0.12 −0.09 −0.03 (10−4)
Size-corrected leaf depth, dN 0.33 0.22 0.13
Size-corrected branching, BN −0.30 −0.19 −0.09

aThe P-values are indicated in parentheses; no P-value is indicated in case P < 10−10. See Appendix C for definitions.

Table 6. Generalized Linear Model Analysisa: Coefficient of determination for a GLM E[Y] = β0 + β1X + β2 X 2 + β3 I{X > mean(X)}.

Predictor, X
Response, Y Heat flow, H Tensor style, S Strain rate second invariant, I2

Earthquake intensity, � 0.20 0.16 0.12
Background nearest-neighbour distance, log10(ηbg) 0.29 0.19 0.05
Proportion of background events, pbg 0.09 0.09 0.06
Quality of mode separation, Q 0.18 0.09 0.04
Threshold between background and cluster modes, log10(η0) 0.09 0.08 0.02
Proportion of singles, pS 0.04 0.03 0.06
Proportion of foreshocks, pF 0.20 0.08 0.11
Aftershock magnitude gap, �A 0.04 0.02 0.01
Size-corrected leaf depth, dN 0.14 0.08 0.05
Size-corrected branching, BN 0.10 0.06 0.03
aSee Appendix D for definitions and further detail.

global results and those obtained in the detailed regional study of
Zaliapin & Ben-Zion (2013a,b) indicate clear dependency of seis-
mic clustering on the heat flow in the region. The results are con-
sistent with those obtained by Yang & Ben-Zion (2009) and Enescu
et al. (2009) by different statistical analyses, and with theoretical
expectations based on a viscoelastic damage rheology model (Ben-
Zion & Lyakhovsky 2006).

The overall picture emerging from these studies indicate that
there exist two primary types of earthquake clustering. (i) Brittle
fracture in cold regions results in burst-like clusters characterized
by a prominently large main shock that happens in the very be-
ginning of the sequence and triggers multiple offspring of smaller

magnitude occurring in a small number of generations and decay-
ing until merging with the background seismicity. Heterogeneity
of stress/strength field (which might create fracture barriers) and
generally larger failure threshold in cold regions reduce the trig-
gering potential, which particularly affects small-to-intermediate
magnitude events and results in lower overall offspring production,
smaller cluster size, and increased proportion of singles. At the
same time, large events (m > 6) have sufficient potential not only for
overcoming the failure threshold but also for significantly disturb-
ing the neighbouring stress/strength field and generating long slow
decaying aftershock sequences. (ii) Brittle–ductile failure mecha-
nisms in hot regions result in swarm-like clusters that lack a single
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prominent main shock. Instead, they gradually develop, event-by-
event, by triggering earthquakes of comparable magnitudes. The
offspring span generally multiple generations in such clusters, but
decay overall much faster creating a notable temporal gap between
offspring activity in a fading cluster and future background events.
The stress/strength field in hot areas is more homogeneous, and the
failure threshold is generally lower than in cold regions, which fa-
cilitate triggering potential and allows small-to-medium magnitude
events to have offspring. This leads to increased size of clusters
(for small-to-intermediate main shocks) and decreased proportion
of singles.

Our findings on preferential occurrence of swarm-like clusters in
hot regions, (prominently including the mid-ocean ridges transform
areas) and their general statistical properties, are consistent with
previous large-scale analyses of oceanic swarms (e.g. McGuire et
al. 2005; Roland & McGuire 2009). Furthermore, our results on
seismic intensity, cluster size distribution, background proportions,
and temporal decay of offspring parallel the findings of Kagan et al.
(2010) and Chu et al. (2011) on variations of Epidemic-Type After-
shock Sequence (ETAS) model parameters across different tectonic
zones. Their tectonic zones 1 (active continents) and 4 (trenches)
roughly correspond to the cold areas of our study; while zones
2 (slow-spreading ridges) and 3 (fast-spreading ridges) generally
correspond to the hot areas.

We propose the effective viscosity of the lithosphere to be the
main control of the style of earthquake clustering. This is consis-
tent with interpretations that swarms reflect migration of fluids or
creep (e.g. Hill 1977; Hainzl 2004; Hainzl & Ogata 2005; Vidale
& Shearer 2006; Chen et al. 2012), as increasing heat flow and
fluid content will reduce the effective viscosity and lead to brittle–
ductile deformation that may include creep. However, the expla-
nations based on fluid flow and slow slip events appeal to specific
detailed micromechanisms involving in general many parameters
(and expected to have additional consequences beyond swarm gen-
eration). In contrast, the simpler term effective viscosity involves a
continuum-based macroscopic description of the behaviour in a re-
gion (Ben-Zion & Lyakhovsky 2006), not committing to any micro
mechanism.

There is no sharp transition between the clusters of the two pri-
mary types, and global seismicity exhibits a wide variety of cluster-
ing forms. Nevertheless, the cold and hot environments are clearly
distinguishable by the average values and distributions of multiple
cluster characteristics. Our analysis also suggests that the type and
intensity of lithospheric transformation, as measured by the strain
rate tensor, play a secondary role in determining the earthquake
cluster style (see, in particular, Tables 5, 6 and Fig. D1). Exam-
ining multiple complementary statistics not sensitive to artefacts
produced by common catalogue deficiencies (Zaliapin & Ben-Zion
2015) allows us to have confidence that our main findings will re-
main valid in future analyses with improved catalogue quality and
alternative cluster identification techniques (e.g. Roland & McGuire
2009; Zhang & Shearer 2016). Additional analyses of seismicity ac-
counting for non-universal space-dependent properties, combined
with geodetic data on aseismic deformation and modelling, can im-
prove further the understanding of earthquake dynamics and provide
refined information for seismic hazard assessments.
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Figure A1. Global heat flow distribution, after (Bird et al. 2008). The map is clipped at H = 0.16 W m−2, while the maximal reported value if H = 0.3 W m−2.

Figure A2. Characteristics of the strain rate tensor (Kreemer et al. 2014). (a) Strain rate tensor style S of eq. (3). (b) Strain rate tensor second invariant I2 of
eq. (2).
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Figure A3. Worldwide spatial distributions of selected earthquake and cluster statistics. (a) Average hypocentral depth, z. (b) Threshold η0 that separates the
background and cluster modes. (c) Quality Q of separation between the background and cluster modes. (d) Aftershock magnitude gap �A. (e) Average family
branching BN corrected for cluster size, for families with size 5 ≤ N ≤ 20.
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Figure A3 (Continued).
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Figure A4. Average values of selected cluster statistics as a function of strain rate tensor’s style S and second invariant I2. (a) Average hypocentral depth, z.
(b) Average family branching BN corrected for cluster size, for families with size 5 ≤ N ≤ 20.

A P P E N D I X B : P RO D U C I N G S PAT I A L
M A P S

In this study we produce spatial maps for selected characteristics of
the lithosphere, earthquakes, and earthquake clusters. These char-
acteristics can be partitioned into the following four types:

(i) Individual earthquake characteristics—magnitude m,
hypocentral depth z, Baiesi-Paczuski distance ηij to the parent,
foreshock index IF(i) that equals to unity if earthquake i is a
foreshock and zero otherwise, and background index IB(i) that
equals to unity if earthquake i belongs to background population,
and zero otherwise.

(ii) Regional characteristics—earthquake intensity �, maximal
observed magnitude mmax, the position ηbg of the background popu-
lation, and quality Q of separation between background and cluster
mode.

(iii) Individual cluster characteristics—index IS(k) of being a
single that equals to unity if cluster k consists of a single event, and
zero otherwise, size-corrected average leaf depth dN (only defined
for families), size-corrected average family branching BN (only de-
fined for families), and the aftershock magnitude gap �A equal to

the difference between the magnitudes of the family main shock and
the largest aftershock (only defined for families with aftershocks).

A spatial map of a selected characteristic is produced via the
following steps:

(1a) The value of an individual earthquake characteristic is as-
signed to the event epicentre.

(1b) The value of an individual cluster characteristic is assigned
to the epicentre of the family main shock (single is considered to be
a main shock).

(1c) The value of a regional characteristic is estimated at the
epicentre of each catalogue event with magnitude m ≥ 5 within a
circle with radius r = 200 km centred at this event.

(2) To obtain an averaged (or maximal) value of the selected
characteristic at point x, the raw estimation from (1) is averaged (or
maximized) within circles of radius r = min (r100, 100 km), where
r100 is the radius of the circle centred at x that contains 100 events
with magnitude m ≥ 5. The points where the circle of radius 100 km
contains less than 5 events of magnitude m ≥ 5 are left transparent.
The bandwidth of such adaptive averaging is inversely related to the
seismic intensity, which leads to emphasizing detailed changes of
the examined earthquake characteristics in high-intensity regions
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while applying large-scale smoothing in low-intensity regions. The
100 km limit for the radius of the averaging circle produces coloured
bands that are often wider than actual seismicity domains, in partic-
ular in the transform and divergent environments. This is done for
visual convenience.

(3) An isotropic Gaussian filter is applied to a map from (2). This
last step is only applied to smooth the maps. It does not disturb the
global patterns of spatial variability.

A P P E N D I X C : S P E A R M A N
C O R R E L AT I O N A NA LY S I S

Spearman rank correlation is designed to detect possible depen-
dency between non-Gaussian random samples. Recall that the rank
r(Xk) of an observation from a sample {Xi}, i = 1, . . . , N is defined
as the index of this observation in the sample ordered in increasing
fashion, from the smallest to the largest observation. For exam-
ple, the ranks of the observations from the sample {−5, 2, 1} are
{1, 3, 2}. In a sample with non-repeating values, the ranks are
natural numbers from 1 to N.

Consider a paired random sample {Xi, Yi}, i = 1, . . . , N. The
Spearman correlation coefficient ρ for the sample is defined as the
Pearson correlation between the ranked sample values:

r (X, Y ) = corr [r (Xi ) , r (Yi )] .

Spearman correlation has several properties that make it con-
venient for establishing non-linear relations in non-Gaussian
data:

(i) The correlation can detect non-linear relations. Namely,
ρ(X, Y) = 1 for any monotone increasing deterministic relation Y =
f(X) and ρ(X, Y) = –1 for any monotone decreasing deterministic
relation Y = f(X);

(ii) The correlation is insensitive to monotone transformations of
data. Namely, ρ(X, Y) = ρ(f(X), g(Y)) for any monotone increasing
functions f and g;

(iii) ρ(X, Y) is less sensitive to outliers than the conventional
Pearson correlation;

(iv) For Gaussian data, the Spearman correlation is close to Pear-
son correlation.

A straightforward way of establishing significance of Spearman
correlation is bootstrap: generating multiple independent ranked
paired samples and using them to approximate the distribution of ρ

under the hypothesis of independence. An alternative, approximate,
approach suggests that the quantity

t = ρ

√
N − 2

1 − ρ2
(C1)

under the null hypothesis of independence has the Student distri-
bution with N − 2 degrees of freedom (Kendall & Stuart 1973).
For large sample sizes this is very close to the standard normal
distribution.

The bootstrap and analytical approaches give practically indis-
tinguishable results for our sample sizes. We report the significance
levels (see Table 5) according to the analytical approximation of
eq. (C1).

A P P E N D I X D : G E N E R A L I Z E D L I N E A R
M O D E L A NA LY S I S

Generalized Linear Models (GLMs) is an extension of linear re-
gression framework to non-normal responses that uses the likeli-
hood approach for model fitting. We use GLMs to complement the
Spearman correlation analysis of Appendix C. Specifically, we see
how the average values of the examined earthquake statistics can
be predicted by non-linear functions of (i) heat flow H [W m−2], (ii)
strain rate tensor style S, and (iii) strain rate tensor second invariant
I2. For every examined earthquake statistic Y, we fit three GLMs,
one for each predictor X from the above list:

μ ≡ E [Y ] = β0 + β1 X + β2 X 2 + β3 I{X> mean (X )}. (D1)

The model’s right hand side combines a quadratic regression in
X and the Heaviside function for the deviation of X from its average.
The goodness of fit is measured by the coefficient of detemination:

R2 = 1 − Var [model residuals] /Var [Y] . (D2)

Here Var[] denotes the sample variance. The value of R2 is inter-
preted as the proportion of variance in Y explained by the model. In
particular, R2 = 1 means that the model does a perfect (determinis-
tic) prediction of Y, while R2 = 0 suggests that the right hand side
of (D1) has no information about Y.

We consider ten earthquake statistics and three predictors, which
results in thirty models. The results are summarized in Table 6
and Fig. D1. The solid lines in Fig. D1 represent model fit; the
amplitude of a line’s jump corresponds to the importance of the
last non-linear term I{X > mean (X)}—the difference in the average of
Y for below-than-average and above-then-average values of X. The
analysis suggests that the heat flow is the most powerful predictor
among the three examined ones: there exists only one statistic for
which the heat flow does not give the highest R2—the proportion of
singles pS.

We also observe that the quality of forecast is uniformly low—
the coefficient of determination never exceeds 0.3. Nevertheless, all
models with the heat flow as predictor are highly significant. This
confirms the observations in the main part of the paper that heat
flow is a significant control for the average value of the examined
earthquake statistics.
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Figure D1. Generalized Linear Model (GLM) analysis of global seismicity. Each panel refers to forecasting a particular characteristic of seismicity using
either heat flow H (first column—a, d, g, j, m, p, s, y, ab), strain rate tensor style S (second column—b, e, h, k, n, q, t, w, z, ac), or logarithm of strain rate
tensor second invariant log10(I2) (third column—c, f, i, l, o, r, u, x, aa, ad). Grey dots—data points; each data point corresponds to a 0.5◦ × 0.5◦ Earth surface
cell. Black lines—GLM forecast. (a, b, c): Seismic intensity � [events/year]; the analysis is done for log10 �; (d, e, f): Average distance in background mode,
log10(ηbg); (g, h, i): Proportion of background events, pbg; (j, k, l): Quality of separation between cluster and background modes, Q; (m, n, o): Threshold that
separates the cluster and background modes, log10(η0); (p, q, r): Proportion of singles among clusters, pS; (s, t, u): Proportion of foreshocks among aftershocks
and foreshocks, pF; (v, w, x): Difference between magnitude of the main shock and the largest aftershock, �A; (y, z, aa): Average leaf depth, corrected for
family size, dN; (ab, ac, ad): Average family branching, corrected for family size, BN.
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Figure D1 (Continued).
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