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Section A. Stability of family structure with respect to the magnitude cutoff 11 

The goal of this section is to (i) further illustrate the dominant family types and 12 

(ii) explore stability of the family type with respect to the magnitude threshold of the 13 

analysis. We consider here two families and study how they transform depending on the 14 

minimal magnitude of the analysis. The first family is located in the Salton trough area 15 

(Fig. A1). The largest event in this family has mainshock magnitude 5.75 and coordinates 16 

(33.0875N, 115.6195W). The second family spans the San Gabriel valley and mountains 17 

(Fig. A2). The mainshock of this family has magnitude 5.51 and coordinates (34.1380N, 18 

117.7082W); it occurred right off the San Gabriel mountains near Claremont, CA.  19 

When the nearest-neighbor analysis is done for earthquakes with m ≥ 4.0, the 20 

Salton trough sequence consists of a single event (Fig. A1a,b,c), while the San Gabriel 21 

family (Fig. A2a,b,c) combines 6 events in a spray-like configuration with a single 22 

foreshock.  23 
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When the magnitude cutoff in the nearest-neighbor analysis is lowered to 3.0, the 24 

number of events in both the families increases. The Salton trough family (Fig. A1d,e,f) 25 

now has 31 events, including 12 foreshocks and 18 aftershocks. The topology of the 26 

family (Fig. A1f) combines a chain of 10 events and a burst of 15 events. The San 27 

Gabriel family (Fig. A2d,e,f) now contains 34 events; and still has a single foreshock. It 28 

must be noted that the foreshock that was present in the m ≥ 4.0 analysis no longer 29 

belongs to the cluster; such reshuffling of the nearest-neighbor cluster structure may 30 

occur even in conventional Euclidean spaces. The number of events that change their 31 

clusters under changing the magnitude cutoff of the analysis is however very small. The 32 

events in the Salton trough family are organized in a prominently spray-like shape (Fig. 33 

A2e,f), with 26 out of 34 earthquakes being direct aftershocks of the largest event. The 34 

spatial extent of the San Gabriel family (Fig. A2e) is smaller than that of the Salton 35 

trough family (Fig. A1e).  36 

Finally, we decrease the magnitude cutoff to 2.0. The Salton trough family (Fig. 37 

A1g,h,i) now has 315 events, with 81 foreshocks and 233 aftershocks. Topologically 38 

(Fig. A1i), the family consists of multiple chains and a dominant burst that includes 136 39 

events (43%). The San Gabriel family (Fig. A2g,h,i) has 400 events, with 3 foreshocks 40 

and 396 aftershocks. Topologically (Fig. A2i), the family is mainly comprised of a burst 41 

that includes 261 events (65%). It is now clearly seen that the spatial extend of the San 42 

Gabriel family (Fig. A2h) is much smaller than that of the Salton trough family (Fig. 43 

A1h). We also note that the San Gabriel family has roughly isotropic shape (reminiscent 44 

of explosion) whereas the Salton trough family is concentrated in a small number of 45 

directions (suggesting flow in specific channels). To conclude, our results suggest that the 46 
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cluster structure is stable with respect to the magnitude threshold of the nearest-neighbor 47 

analysis.  48 

 49 

Section B. Normalized tree depth 50 

The main text of the paper analyzes the average leaf depth ‹d›. An alternative 51 

approach to treat the bimodal distribution of the average leaf depth is related to the depth 52 

scaling with family size N. Note that a linear chain of size N has depth ‹d› = N−1 ~ N; a 53 

perfect spray-shaped tree of size N (a tree with N−1 leaves directly attached to the root) 54 

has depth 1 ~ N0. Here the sign “~” stands for “scales as when N increases”. It is hence 55 

natural to expect for the observed trees to behave like ‹d› ~ N, with 0 <  < 1. Figure 56 

B1a shows the average leaf depth ‹d› as a function of the family size N for the regular 57 

families obtained in the nearest-neighbor analysis for m ≥ 2 earthquakes. The figure only 58 

shows 452 families with the mainshock magnitude 4.0 or above. A notable observation is 59 

the existence of two principal modes of the expected increase of the depth ‹d› with 60 

family size N; they are depicted by two lines ‹d›  N0.5. One of the modes (located to the 61 

left) corresponds to the much higher tree depths for the same family size. To quantify the 62 

mode separation, we introduce the normalized tree depth  = ‹d›N−0.5, which balances 63 

the effect of depth increase with the family size. Figure B1b further illustrates the modes 64 

of the depth-size dependence, using different levels of the normalized depth . Figure B2 65 

shows three examples of trees with different values of the normalized depth .   66 

We note that the tree structure is affected by the magnitude of the events in the 67 

family. In particular, large-magnitude 68 events tend to attract more offspring, 
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according to the nearest-neighbor distance of Eq. (1) that exponentially decreases with 69 

the magnitude of the parent. Figure B3 shows the normalized depth  as a function of the 70 

family mainshock magnitude m for the 51 regular families of size N ≥ 100. The values of 71 

the normalized depth span the range 0.05 <   < 2. Notably, there exists a transition in the 72 

family formation process between medium-magnitude and large-magnitude events with 73 

the transition range 4.7 < m < 6.2. Namely, all m > 6.2 mainshocks form prominently 74 

spray-shaped clusters with very small tree depth,  < 0.11; such clusters would be 75 

commonly referred to as aftershock sequences. We note that large-magnitude events 76 

typically break the entire seismogenic zone and reach the free surface; this may be related 77 

to the topologic structure of the respective families. All medium-magnitude mainshocks, 78 

m < 4.7, form families with high normalized depth,  > 0.5; such clusters would be 79 

commonly referred to as swarms. Finally, the mainshocks in the transition range 4.7 < m 80 

< 6.2 may form clusters with a wide variety of normalized depths, 0.05 <  < 2.0, which 81 

includes linear (for  > 0.5) and spray-shaped (for  < 0.2) families as well as all 82 

intermediate types (0.2 <  < 0.5). 83 

 84 

Section C. Cluster statistics vs. average leaf depth 85 

We have noticed already in Sect. 3 that some family statistics considered in our 86 

analysis are related to each other. Say, it is natural to expect the topological depth ‹d› to 87 

be negatively associated with the family branching index B. We demonstrate in this 88 

section that numerous statistical properties of the nearest-neighbor families are indeed 89 

strongly coupled with the average leaf depth ‹d›. Such coupling in many cases is a 90 
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natural consequence of conditional family construction, and hence presents purely 91 

statistical rather than physical effect. Nevertheless, systematic exploration of these 92 

dependencies seems necessary for better understanding of the earthquake family 93 

structure. We choose the topological depth ‹d› as the governing parameter since it 94 

exhibits the strongest association with the regional properties among the examined family 95 

statistics not exclusively related to foreshocks (see Fig. 7, Table 1).  96 

The frequency-magnitude distribution for cluster mainshocks in two groups with 97 

different ranges of family depth ‹d› is shown in Fig. C1. The mainshock distribution 98 

within the topologically shallow families (solid line) is reminiscent of that for the entire 99 

mainshock population [cf. ZBZ13, Fig. 10] and can be closely approximated by the 100 

exponential Gutenberg-Richter law with b-value (slope of the line) b = 1. The 101 

mainshocks of the topologically deep families (dashed line) also follow an exponential 102 

distribution, although with significantly lower b-value b  0.6. Accordingly, the 103 

proportion of large-magnitude mainshocks is higher within topologically deep, swarm-104 

like families. Recall that the b-value can be interpreted as b = 0.5df with df being the 105 

fractal dimension of epicenters [Aki, 1981]. This implies that the epicenters of the burst-106 

like families with small topological depth occupy statistically the entire surface (df  2), 107 

while those of the swarm-like families occur within essentially one-dimensional channels 108 

(df  1.2). This property is explicitly confirmed below in Fig. C10. Another interesting 109 

observation is that while the number of swarm-like low-magnitude clusters is much 110 

smaller than the number of burst-like low-magnitude clusters; the number of large-111 

magnitude clusters is comparable for both cluster types.  112 
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Figure C2 shows the average number of aftershocks and foreshocks per family, in 113 

regular analysis for events with small-to-intermediate mainshock magnitudes 2 ≤ m ≤ 6, 114 

as a function of family mainshock magnitude m. The analysis is done separately for deep 115 

families (‹d› > 5, diamonds, dashed line) and shallow families (‹d› ≤ 5, circles, solid 116 

line). The average number of foreshocks and aftershocks is larger in deep families. This 117 

is true for aftershocks in families with mainshock magnitude m ≤ 5, and for foreshocks in 118 

families with mainshocks magnitude m ≤ 6. At the same time, the large magnitude 119 

families seem to have fore/aftershock productivity that is independent of the tree depth. 120 

The figure does not show mainshock magnitudes above 6, which add to the variability of 121 

the plot without changing the above conclusions. The average fore/aftershock number for 122 

intermediate mainshock magnitudes can be approximated by an exponential law  123 

 124 

N = KN  10m.                                                             (C1)  125 

 126 

The value of the productivity index for aftershocks in deep (‹d› > 5) and shallow (‹d› ≤ 127 

5) families is   0.7,   0.9 respectively; these estimates are done within the magnitude 128 

range [2.5-5] and may be different if larger mainshocks are considered. While it is harder 129 

to estimate the productivity index for foreshocks due to large fluctuations of the 130 

foreshock number, it is safe to say that the index value is close to  = 0.5 for the 131 

mainshock magnitude range [2.5-5]. 132 

In part I of this study it was shown [ZBZ13, Fig. 14] that the average number of 133 

aftershocks per family NA, ignoring the family depth, scales with the mainshock 134 
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magnitude m as Na  10m,   1; this result is consistent with the other studies that report 135 

the productivity index  of about unity [e.g., Helmstetter et al., 2005]. The depth-136 

independent index   1 may seem inconsistent with the depth-dependent indices   0.7 137 

and   0.9, which are both significantly less that unity. This effect is explained by the 138 

depth-dependent mainshock distribution illustrated in Fig. C1. Namely, the proportion of 139 

topologically deep low-magnitude clusters is small; hence, the total number of 140 

aftershocks for low-magnitude clusters is about the same as the number of aftershocks for 141 

shallow low-magnitude clusters. At the same time, the proportion of topologically deep 142 

large-magnitude clusters is much larger; hence, the total number of aftershocks for large-143 

magnitude clusters is the sum of that number in both deep and shallow clusters. This 144 

effect leads to increase of the scaling exponent in the entire population compared to the 145 

subpopulations of deep and shallow clusters.     146 

In part I it was shown [ZBZ13, Fig. 15] that the aftershock and foreshock 147 

productivity in -analysis is independent of the family mainshock magnitude. This 148 

motivates examination of the average number of -foreshocks and -aftershocks per 149 

family grouped by the family depth. The results are shown in Fig. C3a, where all families 150 

are divided into 5 equal percentile groups according to the increasing value of the average 151 

leaf depth ‹d›. The number of foreshocks and aftershocks clearly increases with the 152 

topological depth. At the same time, the number of foreshocks is always less than the 153 

number of aftershocks. Figure C3b shows the proportion of -foreshocks in the families 154 

with size N ≥ 10, according to the average leaf depth ‹d›. The proportion of foreshocks 155 

increases with the depth from almost 0 for shallow families to above 0.25 for the deepest 156 
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ones.   157 

Next, we focus on the temporal intensity of events within a family around the 158 

mainshock. Figure C4 shows the estimated earthquake intensity, in events per day per 159 

cluster, in regular clusters with mainshock magnitude m ≥ 4 within 30 days from a 160 

mainshock. The analysis is done separately for shallow clusters (‹d› ≤ 5, solid line, 161 

circles) and deep clusters (‹d› > 5, dashed line, diamonds). This analysis includes clusters 162 

with no foreshocks and/or aftershocks. The intensity of events decreases away from the 163 

mainshock, in agreement with the depth-independent results [ZBZ13, Fig. 16]. The 164 

intensity of topologically deep clusters is order of magnitude higher than that of shallow 165 

ones (consistent with the results of Fig. C3), independently of the time away from 166 

mainshock. Moreover, the intensity of events decays faster within 10 days from the 167 

mainshock (for both foreshocks and aftershocks) in shallow clusters. This visual 168 

impression is confirmed by the analysis of Fig. C5 below. We note also that the 169 

foreshock intensity for shallow clusters is always below 0.1 event/day/cluster, and it 170 

decreases to 0.01 events/day/cluster 10 days away from a mainshock. This explains the 171 

observation that only 27% of the shallow clusters (‹d› ≤ 5, m ≥ 4) have foreshocks; while 172 

among the deep clusters (‹d› > 5, m ≥ 4) 95% have foreshocks.  173 

Figure C5 presents more focused results on event intensity within 10 days from 174 

mainshocks for families with at least one -aftershock or -foreshock; the earthquake 175 

intensity is measured in events per day per family. The aftershock decay in the examined 176 

cases closely follows the Omori-Utsu law [Omori, 1894; Utsu et al., 1995]:  177 

 178 
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 = K  (t + c)−p.                                                                  (C2)  179 

 180 

The decay rate is higher for topologically shallow families (p  0.85) than for deep ones 181 

(p  0.65). The foreshock decay shows much more scattered results due to smaller 182 

number of events, but it can also be coarsely approximated by a power law. Due to 183 

sampling problems, we are not trying to estimate the exact foreshock decay rates, 184 

although it is clear that the overall decay in shallow families is faster than in deep ones. 185 

For visual convenience we show in Fig. C5b two lines that correspond to power law 186 

decay with rates of 0.65 and 1.1. The results are consistent with the depth-independent 187 

intensity decay illustrated in Fig. 17 of ZBZ13. The results confirm the suggestion in Fig. 188 

C4 that the intensities of events in topologically shallow sequences tend to decay faster as 189 

time from mainshock (in both directions) increases.  190 

Figure C6 illustrates results of regular analysis of the magnitude difference m 191 

between the mainshock and the largest foreshock (diamonds, dashed line) and aftershock 192 

(circles, solid line). The magnitude difference for both event types tends to be smaller for 193 

deeper families; the effect although is much stronger for aftershocks than for foreshocks. 194 

Notably, the depth-dependent magnitude difference for the foreshocks is always 195 

statistically indistinguishable from the depth-independent average of m = 1.2 [see 196 

ZBZ13, Fig. 18]. In contrast, the depth-dependent magnitude differences for aftershocks 197 

do deviate significantly from the depth-independent average m = 1.1 for very shallow 198 

and very deep families. 199 

The duration of foreshocks and aftershocks in -analysis is illustrated in Fig. C7; 200 

both foreshock and aftershocks sequences 201 are longer for deep families. The duration of 
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-foreshocks is order of magnitude smaller than that of -aftershocks, independently of 202 

the family depth. The distribution of the area for aftershock sequences according to the 203 

family depth is shown in Fig. C8. The area tends to increase with increasing topological 204 

depth, in agreement with the example results shown in Figs. 1 and 2 (see also Figs. A1, 205 

A2). The dependence of area on the family depth is more scattered than the other 206 

characteristics examined in this study; this prevents a robust analysis of the foreshock 207 

area. 208 

Next, we examine the immediate child productivity by analyzing the average 209 

number B of children per parent (Fig. C9). In graph-theoretical terminology, this is 210 

known as the branching number; in seismological context it is usually called the number 211 

of first-generation offspring. Specifically, we (i) consider every parent event within each 212 

family, (ii) focus on the first-generation offspring only, and (iii) do not consider events 213 

with no children, so the minimal number is B = 1. The branching numbers are averaged 214 

within each family. Fig. C9a shows that the shallow families have a prominently higher 215 

average B. This observation is further illustrated in Fig. C9b that displays the distribution 216 

of B for shallow (‹d› ≤ 3) and deep (‹d› > 3) families. As shown, the distribution of B for 217 

deep families has exponential tail 1−F(B) = CB10−B with   0.3.  218 

Finally, we analyze the directional dependency of events in families of different 219 

types. Specifically, consider the empirical distribution F() of the surface angle  220 

between the epicenters of family mainshock and the other events. The angle, in degrees, 221 

is counted counterclockwise assuming that East corresponds to  = 0. For each family we 222 

perform a one sample Kolmogorov-Smirnov test [Conover, 1971] that compares F() to 223 



 

11 

the uniform distribution on the interval [0, 360]. The proportion U of families with at 224 

least 5 events and mainshock m ≥ 4 that pass this test at level 0.01 (we call such families 225 

isotropic) for different average leaf depths is shown in Fig. C10. The proportion of 226 

isotropic families decreases as the tree depth increases. In other words, burst-like 227 

sequences develop in spatially isotropic fashion reflected in uniform circular event 228 

distribution, while deeper swarm-like sequences propagate along preferred channels in 229 

particular directions. The existence of preferred propagation channels may also explain 230 

the observation of Fig. C8 that the area of aftershock sequences increases with the family 231 

depth (and related results in Figs. 1 and 2); a failure cascade along specific (presumably 232 

weaker) directions can extend larger distance from the mainshock compared to the 233 

isotropic failures characterizing the burst-like shallow sequences. 234 

 235 

Section D. ETAS model: specification and parameters 236 

The ETAS model is specified in terms of the conditional intensity (t,f,m|Ht) of a 237 

process Zt ={ti,fi,mi} given its history  Ht = ({ti,fi,mi} : ti < t) up to time t. Here ti represents 238 

earthquake occurrence times, fi their coordinates (e.g., epicenter, hypocenter, or centroid) 239 

and mi the magnitudes [Daley and Vere-Jones, 2002]. The statistical analysis and 240 

inference for Zt are done using the conditional likelihood 241 

logLt = logm ti , fi ,mi |H t( )
ti<t

å - m t, f,m |H t( )dt dmdf
F

ò
M

ò
0

t

ò ,                   (D1) 242 

where M and F denote the magnitude range and spatial domain of events, respectively. 243 

We assume furthermore that the magnitudes of events are independent and drawn from 244 

the Gutenberg-Richter (exponential) distribution with a constant b-value. This reduces 245 
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conditional intensity to the following special form, which allows various particular 246 

parameterizations [Ogata, 1998, 1999]: 247 

. 248 

We use in this study a homogeneous background intensity  =   and the following 249 

parameterization for the response function g suggested by Ogata [1998, Eq. (2.3)]: 250 

.                                      (D2) 251 

Here m0 is the lowest considered magnitude, and (x,y) are Cartesian coordinates of the 252 

epicenters. The model is specified by 8 scalar parameters     K, c, p, , d, 253 

q . In this study, we generate synthetic ETAS catalogs using parameters consistent with 254 

those reported in the literature [e.g., Wang et al., 2010; Chu et al., 2011; Marzocchi and 255 

Zhuang, 2011]:  = 0.003 (km2 year)-1, b =  = 1, K = 0.007 (km2 year)-1, c = 0.00001 256 

year, p = 1.17, q = 1.7, d = 30 km2; the simulations are done within a region of 500×500 257 

km during 15 years. The catalog consists of 146,432 earthquakes. 258 

 259 

Section E. Analysis of Variance: Review 260 

The one-way ANOVA test (Freedman, 2005) compares the means of several 261 

groups of observations by examining the variance within the groups relative to the 262 

variance between the groups. Formally, consider samples Xij, where index i = 1,…,G 263 

counts different groups and index j = 1,…,Ni counts observations within group i; and let 264 

N = N1 + … + NG. Let iX denote the sample average for the group i and i denote the 265 

population mean for the same group. The ANOVA tests the null hypothesis H0: 1 = … = 266 

m t, f |Ht( ) = m0 t, f( ) + g t - ti , f - fi ,mi( )
i:ti<t

å

g t,x,y,m( ) =
K

t + c( )
p

exp a m -m0( )( )
x2 + y2 + d( )

q
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G vs. the alternate hypothesis that at least two groups have different means. The test 267 

statistic is computed as 268 

1
,

1

SSG N
F

SSE G

−
=

−
 269 

where SSG is the group sum of squares and SSE is the error sum of squares: 270 

( )
2

1

G

i i

i

SSG N X X
=

= − ; ( )
2

1 1

iNG

ij i

i j

SSE X X
= =

= − . 271 

The intuition behind the test is that if all groups have the same mean, then SSG/(G-1)  272 

SSE/(N-1) and the test statistic F should be close to unity; while if the groups have 273 

different means, then SSG/(G-1) < SSE/(N-1) and the values of F will increase. Namely, 274 

if (i) the observations are normally distributed and (ii) the variances of all the groups are 275 

the same, then the test statistic F has F-distribution with (G-1) and (N-1) degrees of 276 

freedom (Freedman, 2005). The ANOVA test is reasonably robust with respect to the 277 

violation of both the above assumptions and it is known to have large power with respect 278 

to numerous alternative hypotheses. When applying the ANOVA test, we always 279 

transform the variables to make the samples approximately Normally distributed. 280 

  281 
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 282 
Table C1: Earthquake cluster statistics related to the earthquake family type 283 

Statistic 

B
u
rs

t-
li

k
e 

fa
m

il
y

 

S
w

ar
m

-l
ik

e 

fa
m

il
y

 

Figure # 

-analysis* 
Regular 

analysis 

Average leaf depth, ‹d› Low High 1-4 

b-value for mainshocks High Low C1 

Ave. no. of aftershocks per family, Na Low High C3 C2a 

Ave. no. of foreshocks per family, Nf Low High C3 C2b 

Intensity of aftershocks, a Low High C4, C5a  

Intensity of foreshocks, f Low High C4, C5b  

Magnitude difference between 

mainshock and largest aftershock, m 

High Low  C6 

Magnitude difference between 

mainshock and largest foreshock, m 

High Low  C6 

Duration of aftershocks, Da Low High C7a  

Duration of foreshocks, Df Low High C7b  

Area of aftershocks, Aa Low High C8  

Branching index, B High Low  C9 

Angular surface isotropy, U High Low  C10 

 * Defined in Sect. 2 of ZBZ13 284 

  285 
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 286 

 287 

 288 

 289 

 290 

Figure A1: Cluster in Salton trough area. Circles correspond to earthquakes, lines to 291 

parent links. Figure shows results for different magnitude thresholds of the nearest-292 

neighbor analysis: (a,b,c) m ≥ 4.0,  (d,e,f) m ≥ 3.0, (g,h,i) m ≥ 2.0. (a,d,g) Magnitude as a 293 

function of time. (b,e,h) Space map. (c,f,i) Topologic tree. 294 

295 
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 296 

 297 

 298 

Figure A2: Family in San Gabriel area. The other notations are the same as in Fig. A1. 299 

 300 

301 
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 302 

Figure B1: Two types of nearest-neighbor families. The figure shows the average leaf 303 

depth ‹d› as a function of the family size N for 452 regular families with maximal 304 

magnitude m ≥ 4. The nearest-neighbor analysis is done for m ≥ 2.0. Panel (a) depicts the 305 

two modes by lines ‹d›  N0.5: one of the modes is characterized by much larger average 306 

leaf depth for the same family size. Panel (b) further illustrates the two modes by using 307 

different colors for families with different normalized depth  = ‹d›N −0.5, as described 308 

in the legend.  309 

 310 

   311 

Figure B2: Examples of trees with different values of the normalized tree depth . All 312 

trees correspond to the earthquake families observed in southern California. 313 

314 
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 315 

Figure B3: Two types of nearest-neighbor families. The figure shows the normalized tree 316 

depth  as a function of the family mainshock magnitude m for 51 regular families with 317 

size N ≥ 100. There exists a transition in the family formation process: all mainshocks 318 

with m < 4.7 correspond to large-depth trees (swarm-like families),  > 0.5; all 319 

mainshocks with m > 6.2 correspond to small-depth trees (burst-like families),  < 0.11; 320 

the mainshocks in the transition range 4.7 < m < 6.2 may form families of various types, 321 

with 0.05 <  < 2. 322 

  323 
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 324 

Figure C1: Number of mainshocks with magnitude equal or above m. The analysis is 325 

done separately for clusters with average leaf depth ‹d› ≤ 5 (solid line) and ‹d› > 5 326 

(dashed line). Deep, swarm-like families have significantly larger proportion of high-327 

magnitude mainshocks. 328 

  329 
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 330 

Figure C2: Average number of aftershocks (panel a) and foreshocks (panel b) per family 331 

for different mainshock magnitude. The analysis is done separately for shallow families, 332 

‹d› ≤ 5, (solid line, circles) and deep families, ‹d› > 5, (dashed line, diamonds). The 333 

productivity is significantly larger in deep families.  334 

335 
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 336 

Figure C3: (a) Average number of -foreshocks (diamonds, dashed line) and -337 

aftershocks (circles, solid line) for families with different average leaf depth ‹d›. Each 338 

group corresponds to 20% of the families in -analysis, according to the increasing ‹d›-339 

values. Only families with at least one fore/aftershock are examined. Each foreshock 340 

group contains 25 or 26 families; each aftershock group contains 27 or 28 families. The 341 

error bars correspond to a 95% confidence interval for the mean.  (b) Proportion of 342 

foreshocks in -families with size N ≥ 10. Each group contains 22 or 23 families. 343 

344 
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 345 

Figure C4: Intensity  of events around a mainshock in events per day per cluster; 346 

regular analysis, clusters with mainshocks m ≥ 4. The analysis is done separately for 347 

clusters with ‹d› ≤ 5 (solid line, circles) and ‹d› > 5 (dashed line, diamonds). 348 

349 
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 350 

Figure C5: Intensity of aftershocks (panel a) and foreshocks (panel b) in events per day 351 

per family for families with mainshock magnitude m ≥ 4 and at least one aftershock 352 

(panel a) or foreshock (panel b) in -analysis. The analysis is done separately for families 353 

with ‹d› ≤ 5 (solid line, circles) and ‹d› > 5 (dashed line, diamonds). The event decay 354 

away from the mainshock is more rapid in topologically shallow families. 355 

356 
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 357 

Figure C6: Magnitude difference m between the mainshock and the largest foreshock 358 

(dashed line, diamonds) and aftershock (solid line, circles) in regular analysis. The figure 359 

shows the average value of the magnitude difference for different ranges of the average 360 

leaf depth ‹d› in regular analysis. Each depth group corresponds to 20% of families with 361 

at least one fore/aftershock. Each aftershock group contains 67 or 68 events; each 362 

foreshock group contains 25 or 26 events. The error bars correspond to a 95% confidence 363 

interval for the mean.   364 

365 
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 366 

Figure C7: Duration of foreshock and aftershock sequences. The figure shows the 367 

average value of duration for different ranges of the average leaf depth ‹d› in -analysis. 368 

Each depth group corresponds to 25% of families with at least one fore/aftershock. (a) 369 

Aftershocks, each group contains 84 or 85 sequences. (b) Foreshocks, each group 370 

contains 32 sequences. The error bars correspond to a 95% confidence interval for the 371 

mean.   372 

373 
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 374 

Figure C8: Area A occupied by aftershocks. The analysis only considers -families with 375 

at least 5 aftershocks within 5 parent fault rupture lengths from the mainshock. The area 376 

is averaged over all families within different ranges of the average leaf depth, each range 377 

has length 2. The number of families within each range is indicated in figure.    378 

379 
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 380 

Figure C9: Branching number B. (a) The average value of the branching number for 381 

different ranges of the average leaf depth ‹d› in regular analysis. Each depth group 382 

corresponds to 10% of families with mainshock magnitude m ≥ 4 and size N ≥ 10. Each 383 

group contains 19 or 20 families. The error bars correspond to a 95% confidence interval 384 

for the mean.  (b) The tail of the distribution of the branching number B for families with 385 

‹d› ≤ 3 (solid line) and ‹d› > 3 (dashed line). Branching is larger for shallow families.   386 

387 
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 388 

Figure C10: Circular spatial isotropy of family events. The figure shows the proportion of 389 

families with circularly uniform distribution of events relative to the mainshock, 390 

according to the Kolmogorov-Smirnov test at level 0.01 (see the text for details). Regular 391 

families with at least 5 events and mainshock magnitude m ≥ 4 are considered.  The 392 

results are averaged within families with different values of the average leaf depth, each 393 

point corresponds to 20% of examines families; each group contains 54 or 55 families. 394 

 395 
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