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Abstract Deltas are landforms that deliver water, sediment and nutrient fluxes from upstream rivers to
the deltaic surface and eventually to oceans or inland water bodies via multiple pathways. Despite their
importance, quantitative frameworks for their analysis lack behind those available for tributary networks. In
a companion paper, delta channel networks were conceptualized as directed graphs and spectral graph
theory was used to design a quantitative framework for exploring delta connectivity and flux dynamics.
Here we use this framework to introduce a suite of graph-theoretic and entropy-based metrics, to quantify
two components of a delta’s complexity: (1) Topologic, imposed by the network connectivity and (2)
Dynamic, dictated by the flux partitioning and distribution. The metrics are aimed to facilitate comparing,
contrasting, and establishing connections between deltaic structure, process, and form. We illustrate the
proposed analysis using seven deltas in diverse morphodynamic environments and of various degrees of
channel complexity. By projecting deltas into a topo-dynamic space whose coordinates are given by topo-
logic and dynamic delta complexity metrics, we show that this space provides a basis for delta comparison
and physical insight into their dynamic behavior. The examined metrics are demonstrated to relate to the
intuitive notion of vulnerability, measured by the impact of upstream flux changes to the shoreline flux, and
reveal that complexity and vulnerability are inversely related. Finally, a spatially explicit metric, akin to a
delta width function, is introduced to classify shapes of different delta types.

1. Introduction

Deltas are landforms that deliver sediment, nutrients and water from upstream basins to the shoreline
through interconnected pathways of channels. They are highly productive regions with diverse ecosystems,
fertile agriculture areas, and often considerable subsurface resources. As a result, their population density is
high with several megacities located in deltas. However, climate (sea level rise) and anthropogenic changes
(e.g., upstream dams and local exploration) are putting many deltas in peril [e.g., Syvitski et al., 2009; see
also Foufoula-Georgiou et al., 2013]. Considering that deltas are highly variable in structure, origin and
dynamics due to factors such as climate, geology and external forcings, it is important both to identify the
bio-physical processes that drive their growth, as well as, understand what perturbations seem to mostly
disrupt their functionality and self-maintenance. The question posed in this study is whether we can con-
struct informative metrics of topologic and dynamic complexity of delta channel networks that are rich
enough to discriminate between the physical processes that gave rise morphodynamically to these complex
networks of drainage paths, as well as, to infer a delta’s vulnerability to change. Such metrics are proposed
herein and shown to offer significant insights in connecting delta process and form, and in allowing com-
parison of deltas and inferences about their ability to absorb changes.

The developed metrics rely on a quantitative framework based on spectral graph theory for studying river
delta topology and dynamics. The graph-theoretic framework presented in the companion paper [Tejedor
et al., 2015] allowed us to identify upstream (contributing) and downstream (nourishment) subnetworks for
any given delta vertex (node), including the apex-to-shoreline subnetworks, referred to also as outlet subnet-
works. It also allowed us to compute the steady-state flux propagation in the delta channels and to con-
struct vulnerability maps that quantify how a change in any upstream delta link would affect the shoreline
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fluxes. Based on this analysis, we defined a vulnerability index Vi of an outlet subnetwork Si draining to the
outlet i that quantifies the vulnerability of the outlet flux to local flux changes on all its upstream compo-
nents. The framework was illustrated in Tejedor et al. [2015] using two contrasting deltas: the Wax Lake delta
in the coast of Louisiana, USA and the Niger delta in West Africa.

Having established the mathematical machinery based on spectral graph theory that efficiently allows to
perform the above computations, we now ask the question as to what quantitative metrics one can build
that summarize the topologic complexity of delta networks (reflecting their channel connectivity), as well as
their dynamic complexity (reflecting how flux dynamic exchanges happen within the network). Such met-
rics are absent from the literature hindering further progress in quantifying relations between the morpho-
dynamic processes on the deltaic surfaces and the complex collection of splitting and rejoining channels
that these processes imprint on the landscape. Smart and Moruzzi [1971], motivated by the exact same
problem, presented a preliminary framework based on graph theory by which comparison metrics of delta
channel networks could be built. The metric they proposed was a simple one, termed the ‘‘recombination
factor,’’ and defined as the ratio of the number of junctions (points where two channels combine to form
one) to the number of forks (points where one channel divides into two). This recombination factor was
computed for five different deltas and some interesting observations were made. It is unfortunate that not
much work (to the best of our knowledge) has followed up since the 1970s along these lines. We see our
work as a come-back to this important problem.

A qualitative classification of deltas based on the relative influence of the river, tide and wave effects has
been presented by Galloway [1975]. A fourth dimension was incorporated into this classification by Orton
and Reading [1993] to account for the prevailing sediment size delivered to the delta. Some quantitative
metrics related to delta morphology have been proposed for river-dominated (minimally affected by waves
and tides and bifurcation-dominated) [Edmonds et al., 2011], wave-dominated [Jerolmack and Swenson,
2007], and tide-dominated deltas [Fagherazzi et al., 1999; Rinaldo et al., 1999a, 1999b; Passalacqua et al.,
2013]. These metrics include fractal properties of the channel network [e.g., Cleveringa and Oost, 1999; Mar-
ciano et al., 2005; Seybold et al., 2007; Edmonds et al., 2011], nonfractality of shorelines [e.g., Wolinsky et al.,
2010], island sizes and their probability distributions [e.g., Edmonds et al., 2011; Passalacqua et al., 2013] but
are not directly related to network topology and dynamics. The aim of this paper is to present metrics that
we hope will reopen the dialogue started by Smart and Moruzzi [1971] on connecting physical properties of
deltas to their intricate topologic and dynamic structure and, in addition, allow rigorous analysis of how
structure and dynamics predispose a particular delta to be more vulnerable or more robust to external
perturbations.

In deltaic systems, the apex is connected to the coast via a number of subnetworks, each one delivering
fluxes from the apex to one of the shoreline vertices (outlets). These subnetworks can be topologically very
simple (a straight path of channels) or very complex (multiple splitting and merging paths); see Figures 1a
and 1b for an example for Wax Lake and Niger deltas as presented in Tejedor et al., [2015] which marks such
outlet subnetworks. The topologic structure of each of the subnetworks is embedded within the whole
delta channel network topology to result in various degrees of ‘‘dependence’’ among the subnetworks.
Namely, two subnetworks that share no channels at all (except the apex vertex) are considered independ-
ent, while two subnetworks which advance together until they split farther downstream to empty their
fluxes to different outlets are considered dependent. This is illustrated in Figures 1c and 1d where n (num-
ber of subnetworks to which a given link belongs to) depicts quantitatively the simplicity of the Wax Lake
delta as compared to the Niger delta. Finally, the dynamic interdependence of the subnetworks, measured
in terms of their shared fluxes and the fluxes that leak from one subnetwork to another, rather than in terms
of shared links, can be minimal or significant and it relates both to the network topology and the flux distri-
bution within the system. For example, the overall flux interaction will depend on whether the shared sub-
network links are close to the apex (wider channels and larger fluxes) or close to the coast (narrower
channels and smaller fluxes). This is schematically illustrated in Figures 1e and 1f. This topologic and
dynamic structure of delta networks directly determines how disturbances in an upstream link will propa-
gate downstream and to the coastal outlets. The propagation of this disturbance from upstream links to the
shoreline was quantified in our earlier paper [Tejedor et al., 2015] by a common-sense vulnerability metric
that depicts the degree to which the flux at the coastal vertices is affected by local flux changes at all
upstream links of the subnetworks [see Tejedor et al., 2015, Figure 11].
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In this paper, we build rigorous metrics that quantify the topologic and dynamic complexity of delta net-
works and relate it to the notion of vulnerability. In the quest to shed physical insight into what these met-
rics tell us about the morphological dynamic processes and constraints that gave rise to a delta network we
apply our metrics to seven diverse deltas and explore the question as to whether topologic and dynamic
complexity can form a means of comparing deltas of different physical origin and geologic/geomorphologic
settings.

The structure of the paper is as follows. Section 2 presents a brief description of the seven examined deltas
and summarizes their basic physical characteristics. In Section 3 we develop a suite of metrics that capture
the topologic complexity of deltas. Specifically, we consider loopiness, structural overlapping and entropy-
based topologic complexity. In Section 4, metrics of dynamic complexity are developed. These metrics
account not only for topology but also for the distribution of the fluxes among channels of a subnetwork or

Figure 1. Qualitative illustration of topologic and dynamic complexity of delta channel networks. (a, b) Topologic complexity of subnet-
works within a delta system ranging from a single path to a collection of splitting and rejoining paths connecting the apex to the outlet.
(c, d) Shared links among subnetworks that drain to different outlets—a link might be part of only one subnetwork (n51) or a number of
subnetworks n depending on the overall topologic structure of the delta system. (e, f) Flux interaction among subnetworks—bifurcation of
channels within a subnetwork that led their fluxes to another subnetwork characterize the dynamic exchange of fluxes and depends both
on the topology of the network and also the flux distribution.
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flux leakage from one subnetwork to the others. The metrics of dynamic complexity introduced here are
the subnetwork leakage, flux overlapping and entropy-based dynamic complexity. The metric computation
and comparison of seven deltas is presented in Section 5. In Section 6, we illustrate how these metrics can
be used to uniquely position a delta on a delta topo-dynamic space according to its complexity. We also
explore the connection of delta complexity to its vulnerability to change in Section 7. Section 8 goes one
step further to acknowledge the fact that the topologic and dynamic complexity of a delta network varies
downstream from the apex to the shoreline and attempts to introduce spatially explicit metrics of complex-
ity, leading to the notion of a delta network width function. Overall conclusions and directions for further
research are discussed in Section 9.

2. Physical Characteristics of Seven Deltas Analyzed

We selected a diverse set of delta networks on which the proposed complexity metrics were computed and
comparisons were made. In this section, we summarize the physical characteristics of the seven deltas
selected for analysis namely: (1) Niger, (2) Parana, (3) Yukon, (4) Irrawaddy, (5) Colville, (6) Wax Lake and (7)
Mossy arranged in order of decreasing size (delta top area). We refer to Figure 2 for the channel networks
and Table 1 for physical characteristics of the examined deltas (note that a more detailed account for the
Niger and Wax Lake deltas was provided in Tejedor et al. [2015]).

Extracting the channel networks from an air photo or satellite image of a delta is not an easy task. For this
reason we have adopted here for our analysis the exact five traced deltas in the study of Smart and Moruzzi
[1971]—Niger, Parana, Yukon, Irrawaddy, and Colville—and have added the Wax Lake and Mossy deltas for

Figure 2. Location of seven deltas and their corresponding channel networks numbered according to size (largest to smallest area). We used the Smart and Moruzzi [1971] networks for
(1) Niger, (2) Parana, (3) Yukon, (4) Irrawaddy, and (5) Colville Deltas. For (6) Wax Lake we used the network extracted by Edmonds et al. [2011]. We have extracted the network of (7)
Mossy from Google Earth. Satellite images are copyrighted by Digital Globe Inc. 2014.
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which channel networks have been extracted in previous studies [Edmonds et al., 2011]. The issue of what
detail one should use in tracing a channel and make it part of the network or ignore it is an important one
but not pursued in this study. However, we hope that the metrics presented here will allow the systematic
study of the topologic and dynamic complexity of a delta system as a function of the detail at which its net-
work is abstracted.

Comparison of the set of topologic and dynamic complexities in deltas of different age, size, climate, sedi-
ment, external forcing etc. is hoped to provide insight toward the goal of relating physical attributes of the
delta generating processes to the complex self-organized arrangement of the channels that nourish and
maintain the functionality of the delta system.

2.1. Niger Delta
The Niger Delta located in the West coast of Nigeria (latitude 4.958, longitude 6.188), receives input from the
Niger River at an average water discharge of 6130 m3 s21 and sediment discharge of 3.97 3 107 tons yr21

[Syvitski et al., 2005]. The origin of the delta is estimated to be 80 - 35 million years BP during the Late Creta-
ceous [Goudie, 2005]. It is the largest delta in Africa covering an area of 24,508 km2 and sediment is mostly
fine sand [Orton and Reading, 1993]. The tidal range is 3.0 m. It is qualitatively classified as tide and wave
dominated [Syvitski et al., 2005]. We utilized the channel network outlined by Smart and Moruzzi [1971], and
identified 181 links, 130 vertices and 15 shoreline outlets (see Table 2).

2.2. Parana Delta
The Parana Delta, located North of Buenos Aires, Argentina (233.808, 259.258) is fed by the Parana River,
which delivers an average water discharge of 13,600 m3 s21 and sediment discharge of 7.75 3 107 tons
yr21 [Syvitski et al., 2005]. Delta genesis was estimated during the Middle Holocene (6000 years BP) [Politis
et al., 2011]. Parana delta covers an area of 15,463 km2 and sediment are mostly fine sand, silt and clay [Fos-
sati et al., 2014]. The tidal range is 4.0 m. It is qualitatively classified as a river and geology dominated delta
[Syvitski et al., 2005]. We utilized the channel network outlined by Smart and Moruzzi [1971], and identified
86 links, 69 vertices and 18 shoreline outlets.

Table 1. Location and Summary of Physical Characteristics for Each Delta

Delta Location Area (km2) Age (years)

Apex to
Shoreline Average

Distance (km)
Dominant

Forcing References

1. Niger Nigeria 24,508 Late Cretaceous (80–35 Million BP)a 160 Wave/Tideb Goudie [2005]a; Syvitski et al. [2005]b

2. Parana Argentina 15,463 Middle Holocene (6000 BP)a 213 River/Geologyb Politis et al. [2011]a; Syvitski et al. [2005]b

3. Yukon Alaska, USA 8,313 Middle Holocene (5000 BP)a 80 Waveb Nelson and Creager [1977]a; Syvitski et al. [2005]b

4. Irrawaddy Myanmar 6,438 Middle Holocene (8000–7000 BP)a 117 Tideb Hedley et al. [2010]a; Syvitski et al. [2005]b

5. Colville Alaska, USA 240 Middle Holocene (4000 BP)a 22.5 Riverb Jorgenson et al. [1998]a; Walker [1998]b

6. Wax Lake Louisiana, USA 100 75a 11.5 Riverb Roberts et al. [1997]a; Edmonds et al. [2011]b

7. Mossy Canada 17 140a 4.7 Riverb Smith et al. [1998]a; Edmonds et al. [2011]b

aReferences for age.
bReferences for dominant forcing.

Table 2. Summary of Simple Topologic Characteristics of Each Delta Channel Networka

Delta
NL # of

Links
NV # of
Vertices

NO # of
Outlets

NJ # of Junction
Vertices

NF # of
Fork

Vertices
Recombination
Factor a5NJ/NF

1. Niger 181 130 15 50 65 0.769
2. Parana 86 69 18 18 33 0.545
3. Yukon 169 126 24 37 65 0.569
4. Irrawaddy 100 71 6 30 35 0.857
5. Colville 140 107 20 34 53 0.642
6. Wax Lake 59 56 24 5 27 0.185
7. Mossy 67 61 23 10 28 0.357

aThe recombination factor introduced by Smart and Moruzzi [1971] is computed based on rudimentary graph theory. Note that the
values reported here for Niger, Parana, Yukon, Irrawaddy and Colville have been obtained from the analysis of the images by Smart and
Moruzzi [1971]; values for Wax Lake were obtained from the analysis of the network extracted by Edmonds et al. [2011]; and values for
Mossy were obtained from the analysis of the network extracted from Google Earth.
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2.3. Yukon Delta
The Yukon Delta is located in the West coast of Alaska, USA (63.058, 2164.058) and receives input from the
Yukon River with an average water discharge of 6620 m3 s21 and sediment discharge of 5.97 3 107 tons
yr21 [Syvitski et al., 2005]. Delta genesis is estimated to be during the Middle Holocene (5000 years BP) [Nel-
son and Creager, 1977]. It has an area covering 8313 km2 with mainly fine-grained sediments [Walker, 1998].
The tidal range is 1.5 m. It is qualitatively classified as a wave dominated delta [Syvitski et al., 2005]. We uti-
lized the channel network outlined by Smart and Moruzzi [1971], and identified 169 links, 126 vertices and
24 shoreline outlets in the delta.

2.4. Irrawaddy Delta
The Irrawaddy delta, located in the Southernmost coast of Myanmar (16.208, 95.008) is fed by the Irrawaddy
River at an average water discharge of 13,558 m3 s21 and sediment discharge of 2.60 3 108 tons yr21 [Syvitski
et al., 2005]. The delta covers an area of 6438 km2 with the deposited sediment composed of mostly mixed
mud and silt [Orton and Reading, 1993]. It is estimated that the delta began to form around 8000–7000 years
BP together with most of the deltas in Southeast Asia [Hedley et al., 2010]. The tidal range is 4.2 m. It is qualita-
tively classified as a tide dominated delta [Syvitski et al., 2005]. We utilized the channel network outlined by
Smart and Moruzzi [1971] and identified 100 links, 71 vertices and 6 shoreline outlets in the delta.

2.5. Colville Delta
The Colville delta is located in the Northern part of Alaska, USA (70.408, 2150.658) and receives input from
the Colville River with an average water discharge of 491.7 m3 s21 [Orton and Reading, 1993] and sediment
discharge of 1.16 3 108 tons yr21 [Arnborg et al., 1967]. The delta began to develop during the Middle Holo-
cene (4000 years BP) [Jorgenson et al., 1998]. With an area of 240 km2, it is relatively small compared to other
polar deltas. Sediment is mostly composed of gravel and sand [Orton and Reading, 1993]. The tidal range is
0.2 m. It is qualitatively classified as a river dominated delta [Walker, 1999]. We utilized the channel network
outlined by Smart and Moruzzi [1971], and identified 140 links, 107 vertices and 20 shoreline outlets in the
delta.

2.6. Wax Lake Delta
The Wax Lake delta is located in the coast of Louisiana, USA (29.518, 291.448). It receives input from the
Wax Lake outlet, a channel that was dredged in the early 1940s to mitigate flooding risk in the nearby Mor-
gan City, at an average water discharge of 2900 m3 s21 and sediment discharge of 2.35 3 107 tons yr21

[Roberts et al., 2003]. Sub aerial land only developed after the 1970s flood and has been experiencing rapid
growth in the last two decades doubling to more than 100 km2 today [Roberts et al., 1997; Paola et al.,
2011]. Sediment deposit in the delta is composed of approximately 67% sand [Roberts et al., 1997]. The tidal
range is 0.40 m [Shaw et al., 2013]. It is qualitatively classified as a river dominated delta. We utilized the out-
line of the Wax Lake delta channel network processed by Edmonds et al. [2011] containing 59 links, 56 verti-
ces and 24 shoreline outlets.

2.7. Mossy Delta
The Mossy delta is located in Saskatchewan, Canada (54.078, 2102.358), is fed by the Mossy River with an
average water discharge of 300 m3 s21 [Edmonds et al., 2011] and sediment discharge of 2.20 3 106 tons
yr21 [Oosterlaan and Meyers, 1995]. The delta was formed as a result of the avulsion of the Saskatchewan
River in the 1870s [Smith et al., 1998]. Progradation of the delta resulted in an area of 14 km2 in the early
1940s [Oosterlaan and Meyers, 1995] and after the construction of a spillway dam in the 1960s, the delta
ever since slowly evolved with a current area of approximately 17 km2. Sediment in the delta is roughly
50% fine-grained sand [Edmonds et al., 2011]. Since the delta drains into a lake (Lake Cumberland), the
effect of tides is insignificant. It is qualitatively classified as a river dominated delta. We have extracted the
channel network of Mossy delta from a satellite image copyrighted by Digital Globe Inc. 2014 obtained
from Google Earth on 15 August 2014 and identified 67 links, 61 vertices, and 23 shoreline outlets.

3. Metrics of Topologic Complexity

As can be visually appreciated from Figure 2, delta channel networks are complex structures with no
obvious single attribute that can uniquely describe them. Qualitatively, one can differentiate between
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mostly bifurcating deltas (Wax Lake and Mossy), deltas that seem to be more constrained throughout their
spatial extent (Parana), or constrained mostly close to their apex (Niger, Yukon, Colville), or close to their
outlets (Irrawaddy). One can also see that some deltas include more loops than others and that these loops,
as well as channel splitting and rejoining, happen at different spatial scales from single channels to tapes-
tries of channels that seem to form subdeltas within the main delta. Here we attempt to capture these fea-
tures in a set of quantitative metrics.

For the developments that follow, we need to recall some basic aspects of the graph-theoretic framework
developed in Tejedor et al. [2015]. A delta is conceptualized as a directed graph with channels represented
by links and junctions by vertices. Link directions correspond to the direction of flux propagation. Hence a
delta with N junctions is represented with a directed graph with N vertices. The adjacency matrix A is an
N3N matrix whose element auv is unity if vertex u receives fluxes directly from vertex v (that is, if vertices u
and v are connected by a link directed from v to u) and zero otherwise; see equation (1) and examples in
Tejedor et al. [2015]. The in-degree (out-degree) matrix Din (Dout) is an N3N diagonal matrix whose elements
duu depict the number of links entering (exiting) vertex u. This matrix Din (Dout) is uniquely determined by
the adjacency matrix A as its element duu is the sum of the elements in the uth row (column) of A. Finally,
the Laplacian matrix, Lin (Lout) is defined as Din-A (Dout-A). We also recall that the outlet subnetworks are
identified by the nonzero elements of the eigenvectors of the matrix (Lout)T corresponding to zero eigenval-
ues [Tejedor et al., 2015, sect. 3.3]. If instead of mere topology we also consider flux propagation, the adja-
cency matrix A is replaced with the weighted adjacency matrix W, where the weights wuv correspond to the
fraction of flux in link (vu) with respect to the flux in vertex v, which can be estimated from channel attrib-
utes, such as channel width, depth, and velocity or computed via numerical modeling. In general, a link
from vertex v to vertex u is denoted by (vu), and, according to the above nomenclature, it corresponds to
the element muv of the suitable matrix M (adjacency, degree, Laplacian, weighted Laplacian, etc.). We
assume that the examined delta has No outlets indexed by i 5 1,. . ., No and refer to the contributing subnet-
works Si of the ith outlet as ‘‘ith subnetwork.’’

Based on this framework we introduce metrics that are defined here for individual outlet subnetworks, not-
ing that the same metrics can be readily computed for any other nonoutlet subnetwork draining to any
node of interest different from an outlet node. Specifically, we present a set of six metrics that capture three
distinctive characteristics of topologic complexity: (1) Loopiness, (2) Structural Overlapping and (3) Entropy-
based topologic complexity (see Table 3).

3.1. Subnetwork Loopiness
From inspection of Figure 2, one of the first observations is that young deltas like Mossy or Wax Lake look
almost like inverted tributary networks. However, other deltas like Niger or Parana are very far from that
approximation since they contain loops at all scales. We introduce two metrics to depict this loopiness char-
acteristic: Number of alternative paths and Resistance Distance.

3.1.1. Number of Alternative Paths (Nap)
This metric corresponds to the intuitive notion of counting how many different ways (called alternative
paths, Nap) a package of flux can take to travel from the apex to a given outlet. Thus every fork (bifurcation)
in the subnetwork doubles the Nap (recall that in an outlet subnetwork all paths have to converge to a sin-
gle outlet, so for each fork we necessarily have a stream junction). Note that if there are no junctions, as in
the case of a binary tree, then each subnetwork consists of a unique path from the apex to its outlet and
such a delta has the minimum Number of alternative paths (Nap 5 1) for each subnetwork.

Within the graph-theoretic framework [Tejedor et al., 2015], it can be shown that the Number of alternative
paths, from vertex k to the outlet of subnetwork Si, is computed as the kth component of the eigenvector i
of the matrix (I*-AT), where AT is the transpose of the adjacency matrix of the deltaic network, and I* is
obtained from the identity matrix by placing zero in the position (uu) for each outlet u (see Appendix A for
proof).

3.1.2. Resistance Distance (RD)
Resistance distance is a more sophisticated metric, borrowed from the theory of electrical circuits, which
can be used to measure the loopines of a graph. It differs from the Number of alternative paths in the sense
that it does not just compute all the possible paths (in a combinatorics sense). The idea behind resistance
distance is to compute how well-connected two vertices are in a graph, not just in the sense of how many
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different paths are in-
between them, but also by
acknowledging the existence
of disjoint paths, i.e., paths
that do not contain the same
links.

Klein and Randic [1993] defined
formally the Resistance Dis-
tance (RD) between two verti-
ces u and v in a graph G as the
effective resistance between
the two vertices established in
an electric circuit network with
each link replaced by a 1 ohm
resistor. The RD is computed
using standard series and par-
allel relations (see Appendix B).
Thus, two vertices connected
by several paths (parallel con-
nection) have lesser RD than if
they are connected by only
one path (series connection).
For example, if there is only
one possible path between

two vertices, the RD is equivalent to the topologic distance (measured in terms of the number of links between
the two vertices). We normalize the Resistance Distance between the apex and the subnetwork outlet by the
shortest topologic distance between the apex and the outlet. This normalization ensures that the RD between any
two vertices is within the interval [0,1]. To see this, recall that for a single-path subnetwork the RD is equal to the
topologic distance, and if we have more than a single path, the RD decreases. For a binary tree, the RD of every
subnetwork is equal to 1. The RD is defined for undirected graphs in Klein and Randic [1993], so for directed graphs
such as delta networks we need to symmetrize the adjacency matrix in computing RD. The computation of the RD
for subnetwork i is done in the following steps:

1. Select the vertices that do not belong to the subnetwork i and redefine the adjacency matrix A by zeroing
the columns and rows that correspond to these vertices;

2. Symmetrize the modified Adjacency Matrix: As 5 (A1AT)/2;

3. Compute the Laplacian Lout of the symmetric adjacency matrix As;

4. Compute the Moore-Penrose pseudoinverse C of the Laplacian [Penrose, 1955];

5. The Resistance Distance, RD(uv), between vertices u and v is:

RD uvð Þ5Cuu1Cvv2Cuv2Cvu

We define the Resistance Distance of the subnetwork i, RDi, as RD(uv), where v is the apex and u is the outlet
of the subnetwork, normalized by the shortest topologic distance between the apex and the outlet.

3.2. Structural Overlapping of Subnetworks
Figure 3 shows some of the outlet subnetworks of Mossy and Parana deltas. The reader can observe how in
the Parana delta, many channels belong simultaneously to many subnetworks (black links correspond to the
shared links among subnetworks 2–18). On the other hand, Mossy delta only has this kind of overlapping for
links located at the top of the structure (black links correspond to the shared links among subnetworks 12, 13
and 18). It is important to notice that this structural overlapping seems to be a characteristic that varies from
delta to delta but also there can be heterogeneity even within a given delta. Thus, in the Mossy delta, some
subnetworks can share a lot of links but it is also possible to find subnetworks that are almost independent of

Table 3. Summary of Metrics

Metrics Description

A. Metrics of Topologic Complexity Quantifies the loopiness of each subnet-
work via (1.1) the intuitive notion of
the Number of alternative paths from
the apex to the outlet and (1.2) the
notion of equivalent resistance in the
theory of electrical circuits.

1. Loopiness
1.1. Number of alternative paths
1.2. Resistance Distance

2. Structural Overlapping Quantifies the degree to which the net-
work links are shared among (2.1) dif-
ferent outlet subnetworks and (2.2)
pairs of subnetworks.

2.1. Link Sharing Index
2.2. Subnetwork to Subnetwork

Topologic Pairwise Dependence

3. Entropy-based Topologic Complexity Quantifies the (3.1) rigidity and (3.2) flex-
ibility in the system imposed by the
underlying topologic connectivity.

3.1. Topologic Mutual Information
3.2. Topologic Conditional Entropy

B. Metrics of Dynamic Complexity Leakage Index measures the proportion
of flux leaking from a subnetwork
before the flux is delivered to the
outlet.

4. Subnetwork Leakage

5. Flux Overlapping Quantifies the degree to which the net-
work fluxes are shared among (5.1)
different outlet subnetworks and (5.2)
pairs of subnetworks.

5.1. Flux Sharing Index
5.2. Subnetwork to Subnetwork

Dynamic Pairwise Dependence

6. Entropy-based Dynamic Complexity Quantifies the (6.1) rigidity and (6.2) flex-
ibility in the system taking into
account physical processes that con-
trol the partition of fluxes.

6.1. Dynamic Mutual Information
6.2. Dynamic Conditional Entropy
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each other (e.g., subnetworks 12 and
19). In order to capture all of these
conceptual differences we introduce
two metrics: Link Sharing Index and
Subnetwork to Subnetwork Topologic
Pairwise Dependence.

3.2.1. Link Sharing Index (LSI)
This metric aims to quantify the
overlapping of a subnetwork Si with
other subnetworks in the delta Sj

(j 6¼ i). Thus, Si has a high LSI if its
links are shared with many other
subnetworks in the delta, and low LSI
if Si consists of links that are exclu-
sive to it or shared with a very few
other subnetworks. For that purpose,
we define buv as the number of sub-

networks the link (vu) belongs to. We define the subnetwork Link Sharing Index (LSI) by averaging the recip-
rocal of buv over all Ni links of Si:

LSIi512
1
Ni

X
vuð Þ2Si

b21
uv : (1)

The index takes values within the interval [0,1) and equals zero if and only if none of the links that form Si is
shared with other subnetworks. For a perfect binary delta of depth d (the number of binary bifurcations
from the apex to the outlets), with all outlet vertices having the same depth and a single path from the
apex, we have

LSIi512
1
d

Xd

n51

1
2n21 512

2d21

d2d21: (2)

For d 5 2, 5, and 100 we have LSIi 5 0.25, 0.61, and 0.98 for each subnetwork of the perfect binary delta. This
metric is useful to distinguish deltas that consist of a set of quasi-independent subnetworks from deltas that
contain a substantial ‘‘core’’ common to almost all subnetworks (e.g., see the Parana delta). Note that the var-
iability of LSI among subnetworks of a delta system is itself also a metric of topologic complexity, since sys-
tems with larger variability of LSI values imply more heterogeneous link-sharing structure within the system.

3.2.2. Subnetwork to Subnetwork Topologic Pairwise Dependence (TPD)
In order to gain more insight into the subnetwork structural overlapping, which is a measure of the internal
heterogeneity of the entire network structure, we define the Subnetwork to Subnetwork Topologic Pairwise
Dependence. This metric shows the overlapping for all pairs of subnetworks, offering a picture of the local
interaction (in the sense of link sharing) of subnetworks, and therefore with the potential of depicting subu-
nits at mesoscales, which consist of groups of subnetworks. Thus, its value for the pair of subnetworks Si

and Sj is computed as the average of the reciprocal of bij
uv (bij

uv52 if the link (vu) belongs to both Si and Sj

and bij
uv51 if it belongs to Si but not Sj):

TPDij5
1
Ni

X
vuð Þ2Si

bij
uv

� �21
; (3)

where Ni is the number of links in subnetwork Si. Notice the asymmetry in the Topological Pairwise Depend-
ence with respect to the indices i and j (i.e., TPDij 6¼ TPDji).

3.3. Entropy-Based Topologic Complexity of Subnetworks
Historically, entropy was defined as a measure of disorder. This interpretation has been widely used in
physics and engineering based on the idea that a system evolves into an increasing state of disorder (the
second law of thermodynamics); it can also be related to Boltzmann’s entropy in statistical mechanics based

Figure 3. Structural overlapping. (left) Three different outlet subnetworks have been
highlighted for the Mossy delta. Black links represent the common part to the three
subnetworks, and blue channels the common part to subnetworks 12 and 13, but
not to 19. (right) Outlet subnetworks 2 and 18 of Parana delta are highlighted. Black
links represent the common part to both subnetworks.
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on the number of microstates [Prigogine, 1967; Boltzmann, 1872]. Shannon [1948] developed an application
of entropy to information theory, which is different from the historical idea of disorder and deals with the
information that can be gained from the uncertainty in the occurrence of an event. Here we use Shannon’s
entropy to measure the information content of channel splitting and rejoining in a delta. We note that the
information-based entropy has been extensively used in diverse fields ranging from the original application
in signal processing [Shannon, 1948], to ecology [Rutledge et al., 1976; Ulanowicz, 2001], hydrology [Amoro-
cho and Espildora, 1973; Fiorentino et al., 1993; Singh, 1997 and references therein], ecohydrology [Ruddell
and Kumar, 2009a, 2009b], and geomorphology [Leopold and Langbein, 1962; Culling, 1988], among others.

As discussed in Tejedor et al. [2015], we adopt a ‘‘package of flux’’ point of view to describe delta flux trans-
port. Namely, we consider a conceptual individual package of flux that enters the system at the apex and
propagates downstream until it arrives at a channel junction. Here it randomly decides which of possible
further paths to take, with the probability of taking a particular path depending on the channel width or
any other suitable characteristic. In other words, the package performs a random directed walk along the
network of delta channels. A flow in the delta is conceptualized by a large number of noninteracting flux
packages that independently perform such a random downstream walk. To ensure that this process has a
well defined steady state we assume that after reaching an outlet, each package reappears in the apex.

Defining a ‘‘state’’ of this process as the occurrence of a random package at a particular vertex, then pi is the
probability that state i occurs. We can define (–log pi) as a measure of the ‘‘surprise’’ that the occurrence of
the state i (arrival of package at vertex i) causes. Thus, if pi 5 1 (certain event) the surprise is zero and if
pi 5 0 (impossible event), the surprise is infinity; the surprise grows exponentially from zero to infinity. Note
that following the convention used in Information Theory, log refers to logarithm to the base 2.

The product of the probability of occurrence pi and the surprisal (–log pi) gives us a measure of uncertainty hi:

hi52pi log pi: (4)

Therefore, a state that is certain or impossible does not have any uncertainty (i.e., if pi 5 1 or 0, hi 5 0). Note
that hi is a positive function of pi in the interval (0,1). We can define the total uncertainty in a system as the
sum of the uncertainties of each state:

H5
XN

i

hi52
XN

i

pi log pi: (5)

Notice that the maximum of H is observed when the probabilities of occurrence for all the states are equal.

During the evolution of a system, transitions among states occur as a flux package travels from one vertex
to another. If pij is the probability of transition from state j 5 1,. . .,N to state i 5 1,. . .,N, we can define the
uncertainties of those transitions as

H5
XN

i;j

hij52
XN

i;j

pij log pij: (6)

For transitions, H is called joint entropy and it can be decomposed into two components: Mutual Informa-
tion and Conditional Entropy.

Mutual Information (MI) is a measure of the amount of information that one state contains about another
state (i.e., the reduction of uncertainty in one state due to the knowledge of the other) [Cover and Thomas,
2006]. It is expressed as

MI5
XN

i;j

pij log
pij

pi pj
: (7)

Conditional Entropy (CE) is defined as the remaining uncertainty of the state i when j is known and is given by:

CE52
XN

i;j

pij log pj!i; (8)

where pj!i is the probability of transition from j to i given that the initial state is j.
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The topologic complexity quantifies the branching and rejoining of channels and not how the flux is distrib-
uted. Therefore, to compute the topologic entropy-based metrics we set the probability of splitting in each
fork pj!i as the inverse of the number of offspring vertices. The pij corresponds to the steady state probabil-
ity of each transition and can be computed in a similar way as the steady flux calculation in Tejedor et al.
[2015, sect. 3.2] wherein the weighted adjacency matrix W is substituted by the adjacency matrix A. As will
be discussed in section 4.3, in considering delta fluxes, the probabilities pij and pj!i are computed in terms
of the actual partition of fluxes.

4. Metrics of Dynamic Complexity

In the previous section, we introduced a set of metrics to quantify the topologic complexity of deltaic net-
works. However, there is another component of complexity that has not been considered in that analysis,
i.e., the complexity introduced by the flux partition in the system. In Figure 4, we present a caricature of two
systems with the same underlying network structure and therefore the same basic constraint on the flux
partition imposed by their topology. However, their different geomorphologic characteristics may result in
a different distribution of fluxes as shown in Figure 4. The necessity of defining a second component of
complexity that quantifies the effects of the variability of flux partition in the system is apparent. We denote
this component as the dynamic complexity and we argue that together the topologic and dynamic com-
plexities provide a comprehensive, and as we show later nonredundant way of characterizing a delta sys-
tem. For this, we first develop the dynamic complexity metrics and then we implement both metrics in the
seven selected deltas for interpretation and comparison.

The set of metrics to assess the dynamic complexity capture three main characteristics: (1) Leakage, (2) Flux
Overlapping and, (3) Entropy-based dynamic complexity (see Table 3). The dynamic computations are
based on the values of the steady state flux in each vertex and link of the examined delta; those can be eas-
ily obtained according to the methodology in Tejedor et al. [2015, sect. 3.2]. We used here the channel
widths as a surrogate for the flux partition [see e.g., Bolla Pittaluga et al., 2003; Edmonds et al., 2011]
although other parameterizations can be used as deemed appropriate for a given delta.

4.1. Subnetwork Leakage
From the point of view of the flux, subnetworks are in general open systems, i.e., not all the flux that enters
the subnetwork from the apex ends at its outlet, in fact, subnetworks leak out flux to the rest of the system.
This leaking occurs at the border of the subnetwork, and more specifically at bifurcations wherein one of
the downstream channels still belongs to a given subnetwork, but the flux diverted to the other channel
eventually drains to a different outlet (i.e., such a link belongs to a different subnetwork). Quantifying the
ratio of fluxes leaked by a subnetwork is a surrogate of the ‘‘interaction among subnetworks,’’ and thereby,
an important characteristic of their dynamic complexity.

Thus, we define the Leakage Index (LIi) of the outlet subnetwork Si as the proportion of flux that leaks to
other subnetworks with respect to the total steady flux of the subnetwork Si, where the leakage of flux is
computed as the difference between the total vertex flux and total link flux in the subnetwork:

Figure 4. Asymmetric Flux distribution. Caricatures (a) and (b) illustrate two deltas with the same underlying topology (channel network
structure) but different flux distribution. The amount of flux in each channel is illustrated by the width of the blue lines. Thus, Figure 4a
shows a delta where fluxes are evenly distributed among the different channels, while Figure 4b presents a delta with a clear preferential
path by which the main portion of flux is delivered from the apex to the shoreline. As expected, these deltas cannot be differentiated
based on their topologic complexity, but only based on their dynamic complexity, which is significantly different.
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LIi5

X
v2Si

Fv2
X
vuð Þ2Si

Fuv

X
v2Si

Fv

: (9)

Here Fv represents the steady flux at vertex v, Fuv the steady flux at link (vu). Note that the flux Fv at the
upstream vertex v is equal to or larger than the link flux Fuv allowing for possible multiple channels leaving
vertex v, Fuv � Fv . Similarly, the flux at the downstream vertex u is equal to or larger than Fuv allowing for
other upstream channels to deliver their flux to vertex u, Fuv � Fu.

As mentioned before, we can interpret this measure as the capacity of the subnetworks to interact among
each other. Thus, an almost ‘‘sealed’’ subnetwork (LI close to zero) is able to retain most of its flux, having
almost no exposure/interaction with other subnetworks. This situation can happen in two extreme and
opposite configurations: (1) almost independent subnetworks, where only the apex is shared, or (2) almost
completely overlapping subnetworks, where each subnetwork spans the whole system, only differing from
each other in their outlets. On the contrary, high LI implies that the subnetwork has a large interface of
interaction with other subnetworks, and exchanges a significant proportion of its flux. Note that in a binary
delta LI 5 0.5 for all its subnetworks if the partition of fluxes in each bifurcation is equal.

4.2. Flux Overlapping of Subnetworks
In the same way that the structural overlapping has been defined in section 3.2, we define here its dynamic
counterpart. Figure 3 shows how a given channel can belong to different subnetworks, and therefore, the
steady flux contained in that link will be also shared among those subnetworks. However, there is a crucial
difference between these two shared components: from the topologic point of view, the shared links
belong equally to all the subnetworks, but from the dynamic point of view, the shared flux can drain prefer-
entially to only one subnetwork. Using the same line of argument as in section 3.2, we present two metrics
to capture the different properties of flux overlapping: Flux Sharing Index and Subnetwork to Subnetwork
Dynamic Pairwise Dependence.

4.2.1. Flux Sharing Index (FSI)
The goal of this metric is to quantify the degree of flux sharing imposed by the structural overlapping. We
define the Flux Sharing Index (FSIi) for the subnetwork Si as follows:

FSIi512
1
Ni

X
v2Si

ci vð Þ; (10)

where Ni is the number of vertices in the subnetwork Si and ciðvÞ is the proportion of the flux in vertex v
that arrives at outlet i (note that 12ciðvÞ is the proportion of flux in vertex v that arrives to any outlet j, j 6¼ i).
With this metric, we try to capture the dynamic dependence among the outlet subnetworks. If a subnet-
work is totally independent, then ci vð Þ51 8v and all of the flux contained in the subnetwork will eventu-
ally be delivered to the outlet i. This situation corresponds to FSIi �0. On the other hand, if the subnetwork
consists of vertices whose fluxes are shared with many other subnetworks then ci vð Þ � 0 and only a small
proportion of the flux in the subnetwork i will be delivered to the outlet. This corresponds to FSIi �1. Recall
that ciðvÞ can easily be computed as the vth component of the eigenvector of the matrix Lout

W

� �T
that corre-

sponds to the subnetwork i, and Ni is the number of nonzero components of ci [see Tejedor et al., 2015].

4.2.2. Subnetwork to Subnetwork Dynamic Pairwise Dependence (DPD)
Similar to its topologic counterpart, we look for a deeper understanding of the heterogeneity of the flux dis-
tribution within the whole system by examining the flux sharing between subnetworks Si and Sj. This metric
is computed as the ratio of the flux contained in the links that belong to both subnetworks Si and Sj to the
flux contained in the subnetwork Si:

DPDij5

X
u2Sij

F uð Þ
X
v2Si

F vð Þ
; (11)

where Sij is the set of links that belong to both Si and Sj, i.e., Sij5Si \ Sj . Note that if the Topologic Pairwise
Dependence between subnetworks Si and Sj is zero (TPDij50), DPDij is also zero. However, if TPDij has a high
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value, it does not guarantee a high value for DPDij since the flux can travel preferentially to one
subnetwork.

4.3. Entropy-Based Dynamic Complexity of Subnetworks
Here we develop the entropy concept presented in section 3.3, to incorporate the partition of fluxes. Con-
sider a steady flux F5(F1,. . .,FN) at the vertices of a delta with a weighted adjacency matrix W5{wuv} whose
element wuv specifies the proportion of the parental flux Fv that goes to its offspring u. We set the stationary
probability that the package of flux is traveling from vertex v to vertex u proportional to the flux Fuv at the
link that connects these vertices:

puv5
Fuv

Fi
; (12)

where Fi5
X
vuð Þ2Si

Fuv is the total flux in the links of subnetwork Si. We can now find the probability p•v of a

flux package leaving vertex v (while staying within the subnetwork Si) proportional to the flux leaving ver-
tex v:

p•v5
F•v

Fi
5

X
u2Si

wuv Fv

Fi
: (13)

Similarly, the probability pu• of a flux package arriving at vertex u from subnetwork Si is proportional to the
flux entering u:

pu•5
Fu•

Fi
5

X
v2Si

wuv Fv

Fi
: (14)

Recall that the joint entropy of a discrete distribution {puv} as defined in section 3.3, equation (6) can be
computed as:

H52
X
ðvuÞ2Si

puv log puv : (15)

The joint entropy can be partitioned into two components: Mutual Information and Conditional Entropy.
The Mutual Information (MI), defined in equation (7) as a measure of the amount of information shared by
the pairs of vertex u and v, can be expressed in terms of the flux partition wuv as:

MI5
X
vuð Þ2Si

puv log
puv

pu•p•v
5
X
vuð Þ2Si

puv log
wuv

p•v
: (16)

The Conditional Entropy (CE) defined in equation (8) as the average uncertainty that remains about v when
u is known can be expressed as:

CE52
X
vuð Þ2Si

puv log
p2

uv

pu•p•v
: (17)

The entropy can be interpreted as the ability of the system to undergo changes [Ulanowicz et al., 2009] or in
other words, it quantifies how the uncertainty of the system enables it to deal with perturbations. Notice
that for subnetworks consisting of linear paths, CE50 since puv5pu•5p•v , therefore for a binary delta the CE
is zero for all its subnetworks.

5. Metric Computation and Comparison of Seven Deltas

5.1. Loopiness and Leakage of Subnetworks
From simple inspection of Figure 2, we can differentiate two major groups of deltas: (1) bifurcation-
dominated (e.g., Wax Lake and Mossy) and (2) loop-dominated (e.g., Niger, Yukon, Irrawaddy, Parana, and
Colville). The metrics of loopiness that we have presented are able to capture this separation: bifurcation-
dominated deltas are characterized by a low Number of alternative paths (Nap) and a high Resistance
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Figure 5. Summary of (a,c1-e1) topologic and (b,c2-e2) dynamic complexity metrics for the seven deltas (NI 5 Niger, PR 5 Parana, YK 5 Yukon, IW 5 Irrawaddy, CV 5 Colville, WL 5 Wax
Lake, MO 5 Mossy). We note that for a binary tree (for depth d 510) the topologic metrics are equal to: Nap 51, LSI 5 0.80, TMI 51.99 and TCE 50 and the Wax Lake and Mossy deltas
are the closest to those values, as expected.
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Distance (RD) (see Figures 5a and 6a). In bifurcation-dominated deltas, most of the subnetworks do not
have alternative paths; in fact, single paths connecting the delta apex to the shoreline outlets comprise
75% (18/24) and 70% (16/23) of the subnetworks for the Wax Lake and Mossy deltas, respectively, and this
is translated to RD equal to 1. On the other hand, in loop-dominated deltas all of the subnetworks have mul-
tiple paths connecting the apex to the outlet, having values of RD significantly lower than 1 (medians are in
the interval 0.6 – 0.83). More information can be untangled with a detailed comparison of those two met-
rics. First, the Nap of Yukon stands out with respect to the other deltas. However, the range of values of RD
for Yukon is comparable with other deltas like Niger and Colville. This is revealing the fact that the loopines
in Yukon is happening at a smaller scale (loops consisting of fewer links) than in the other deltas, increasing
drastically the Nap but not reducing so much the equivalent RD. Besides, the fact that the number of paths
in Yukon is high for almost all the subnetworks reveals that those small-scale loopy structures are close to
the apex. On the other hand, there are deltas like Parana and Irrawaddy that have intermediate values for
the Nap, and relatively low values of RD. This tendency reveals the existence of complicated structures at
small and medium scales. The higher RD of Parana is the result of its particular structure, wherein the upper
part is clearly loop-dominated, but in its lower region, its structure changes to bifurcation-dominated,
increasing the values of RD (see Figure 2). Figure 6b highlights the potential of Nap and RD to extract com-
plementary information of loopiness since they do not trivially relate to each other across deltas (i.e., differ-
ent slopes for different deltas).

We have characterized the topologic complexity of the subnetworks (apex to outlet) in terms of their loop-
ines. However this difference in their topology can lead to more profound consequences in their dynamic
interaction. We have defined the Leakage Index (LI) to quantify those interactions as it measures the flux
exchange among subnetworks. Thus, we can observe that subnetworks with high topologic complexity (in
terms of loopiness) normally have lower LI. However, that relation is not trivial, since even though the
underlying topology is a major constraint in the distribution of the steady flux, the process-specific dynamic
partition of flux plays an important role. Deltas with similar loopiness, in terms of median and variability
among subnetworks, such as Irrawaddy and Parana, can have subnetwork leakage that significantly differs
(in fact, reverses) in variability. On the other hand, deltas as different as Niger and Wax Lake in terms of
median and variability of their loopiness have similar median, although vastly different variability, for their
subnetwork leakage (see Figure 5b).

Recall here that the Leakage Index measures the proportion of the flux that leaves a given subnetwork.
Notice that those losses only take place in the junctions that form the border of the subnetwork; we refer to

Figure 6. Resistance Distance. (a) Resistance Distance for each delta and (b) Resistance Distance versus Number of alternative paths. Note that the two metrics relate to each other as
expected (the larger the Number of alternative paths the smaller the Resistance Distance, e.g., a clear relationship in Niger and Yukon deltas) but this relationship is nontrivial for some
deltas depicting pronounced differences (e.g., different slopes). For a binary tree, the Resistance Distance is equal to 1 and the Number of alternative paths is also 1 for all subnetworks.
(Note: NI 5 Niger, PR 5 Parana, YK 5 Yukon, IW 5 Irrawaddy, CV 5 Colville, WL 5 Wax Lake, MO 5 Mossy)
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those junctions as external. Thus, subnetworks that contain a low ratio of internal to external junctions will
be more prone to leaking out flux and therefore have high values of LI, and vice versa. Subnetworks with a
high value of loopiness are more likely to have a high value of the internal to external junction ratio, in
agreement with previous results shown in this section. It is also important to notice at this point, that LI is
also sensitive to the flux partition, so the presence of preferential paths for flux can change substantially the
value of LI for a given topology. Therefore it is understandable how deltas with similar topologies, such as
Irrawaddy and Parana, can have quite different LI.

5.2. Structural and Flux Overlapping of Subnetworks
We have argued in sections 3 and 4 how the overlapping in topology and flux among subnetworks is an
important factor in assessing the complexity of the entire delta network. To measure the degree to which a
subnetwork shares its channels and fluxes with other subnetworks, we have introduced the Link Sharing
Index (LSI) and Flux Sharing Index (FSI). Figures 5c1 and 5c2 show that both LSI and FSI have the same gen-
eral trend in their medians but FSI has a larger variability for all deltas. This is expected since there is no pos-
sible dynamic sharing (fluxes) without topologic sharing (channels). Therefore, the flux sharing can be
interpreted as a modulation of the link sharing. Thus, differences between the dynamic and topologic shar-
ing tell us about the asymmetry in the flux distribution. If we examine this closer, we note that Yukon and
Parana have high LSI implying the existence of a core of links that are common to several subnetworks. For
Yukon, the range of variability of FSI is similar to the range of variability for LSI, suggesting an almost equita-
ble distribution of fluxes among the different subnetworks. On the contrary, for deltas such as Irrawaddy
and Niger the ranges of variability of FSI are much bigger than those for LSI, indicating a more asymmetric
distribution of fluxes (presence of preferential pathways of flux delivery to the shoreline). In other words, for
Parana and Yukon deltas (high values for LSI and FSI) there is not only topologic overlapping (links shared
by subnetworks) but also dynamic overlapping wherein flux in each link is also shared by other subnet-
works. On the other hand, for Irrawaddy and Niger deltas, links are relatively equally shared among subnet-
works but the dynamic components are preferentially shared in a sense that a large percentage of the flux
in a given link drains to one subnetwork relative to the others (common topologic units but more inde-
pendent dynamic units).

The metrics discussed above can be useful in characterizing the overall topologic and dynamic dependence
of each subnetwork. However, understanding the nature of those relationships (e.g., subnetworks that over-
lap with a few or a large number of other subnetworks) is necessary in order to tease apart the complexity
of the delta as a whole. Thus, we present a joint representation that captures those relationships, namely:
Subnetwork to Subnetwork Topologic and Dynamic Pairwise Dependence.

Figure 7 shows for three deltas (Mossy, Niger, and Parana) the results of the pairwise analysis of topologic
(left) and dynamic (middle) dependence. Here the outlets are indexed consecutively and counterclockwise
starting with the leftmost one where the delta is plotted with the apex on the figure’s top and outlets at the
bottom. From the topologic pairwise analysis, tree-like deltas (e.g., Mossy) exhibit high values of shared links
(red colors) close to the diagonal, and low otherwise. This means that only neighboring subnetworks have a
significant number of common links, which decreases fast when compared to farther subnetworks. Deltas
like Niger present a similar diagonal-pattern in the topologic pairwise analysis. At the same time, the
dynamic counterpart is clearly different between these two delta types. Specifically, in the analysis of
bifurcation-dominated deltas, some structures appear symmetrically along the diagonal, meaning that for
many pairs (i,j) subnetwork i shares the same proportion of flux with j as j shares with i. However, for loop-
dominated deltas the Dynamic Pairwise Dependence is not symmetric at all. The contiguous areas of high
values of sharing in both charts can be interpreted as mesoscale units in the delta, consisting of several sub-
networks (see Figure 7, right), that emerge from either the topologic or their dynamic overlapping (or both).
Thus, in tree-dominated deltas, the subnetworks separate from each other close to the apex and do not
rejoin again, hence forming different topologic units. Although, the flux is subject to the constraint imposed
by the mentioned topology, red colors (high pairwise dependence) are also observed for subnetworks
located away from each other in the dynamic chart of Mossy delta. This is due to the fact that, although far
away subnetworks only share a few channels, those channels are located close to the apex and can contain
a big percentage of the total flux. On the other hand, in more complex deltas e.g., those that have experi-
enced major avulsions, due to the existence of loops close to the apex, both topologic and dynamic interac-
tions among farther subnetworks are present. Parana exhibits a paradigm of extensive systemwise
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interaction, where the system acts almost as a single unit; this is also reflected in the very small variability
among the 18 outlet subnetworks in all the computed metrics (see Figure 5).

5.3. Entropy-Based Complexity of Subnetworks
Entropy measures the complexity in terms of the uncertainty in the splitting and rejoining paths (topologic)
and fluxes (dynamic). Traditionally, joint entropy is divided into two components the Mutual Information
(MI) and Conditional Entropy (CE). A noteworthy insight is the interpretation of MI and CE as measures of
Rigidity and Flexibility, respectively for both network topology and dynamics; see also Ulanowicz et al.
[2009]. We relate the concept of MI with rigidity, interpreted as a measure of the constraints imposed by
the connectivity of the channel networks. Recall that MI measures the information shared between states,
and in deltas those possible connections require a physical connectivity (channel network). On the other
hand, CE is a measure of the remaining information contained in the system once the structure is imposed.
The source of that remaining information is the uncertainty still present in the system about the next posi-
tion (state) of a package of flux given the knowledge of its current position. Thus, subnetworks consisting of
single paths have zero CE, since no further information is gained when the structure is fixed (i.e., given the

Figure 7. Subnetwork to subnetwork (left) topologic and (middle) dynamic pairwise dependence. Outlets are indexed consecutively and counterclockwise starting with the leftmost one
where the delta is plotted with the apex on the figure’s top and outlets at the bottom. The cell (i,j) of the topologic (dynamic) dependence represents the percentage of links (fluxes)
shared by subnetworks i and j with respect to the total number of links (fluxes) in subnetwork i. Red (blue) colors represent high (low) values of sharing. Right plots illustrate the topo-
logic and dynamic units at intermediate scales that arise from the interpretation of the pairwise dependence.
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current position of the package of flux, we know that its next position is directly downstream of the current
one). Subnetworks with at least one bifurcation have nonzero CE since even though the structure is known,
the voyage of the package of flux is not totally determined (i.e., in each bifurcation, there is some uncer-
tainty related to the probability of taking one or other alternative path).

From the computation of these metrics, Figures 5d1 and 5d2 show similar trends and variability for both
the topologic and dynamic Mutual Information (MI) revealing that connectivity is the most important con-
straint underlying this concept of complexity. The fact that measures of loopiness, Nap and RD, exhibit simi-
lar trends and variability to those of MI reinforces its interpretation as the Rigidity of the system.

The trend and variability seen for the topologic and dynamic MI is not generally observed for Conditional
Entropy (see Figures 5e1 and 5e2): (i) the dynamic CE is smaller than the topologic CE, (ii) big changes in the
variability of those two magnitudes are observed for the same delta (e.g., higher topologic than dynamic
variability for Niger and lower topologic than dynamic variability for Irrawaddy), and (iii) same trends and
variability are observed for bifurcation-dominated deltas such as Wax Lake and Mossy. These differences
and similarities can be interpreted in terms of the flexibility of the system: (i) since flexibility deals with the
information that remains in the system because of the uncertainty introduced in each bifurcation, its maxi-
mum value occurs when there is equal probability of splitting. This implies that topologic CE is always
greater than or equal to the dynamic CE; (ii) Flexibility is very sensitive to flux partition. Therefore, having
symmetric or asymmetric partition in each fork generates different variability across subnetworks for topo-
logic and dynamic CE; (iii) the similarity in the topologic and dynamic CE for Wax Lake and Mossy deltas
resides in their bifurcation-dominated nature wherein very little further information is gained since most of
the subnetworks are single paths (CE 50).

6. Constructing a Topo-Dynamic Complexity Space for Deltas

Having developed the framework to assess the complexity of deltas, it is now possible to push forward the
idea of defining a complexity space where deltas can be mapped and compared. Different topologic and
dynamic characteristics of a delta can be considered coordinates of a Topo-Dynamic complexity space. A
particular choice of the examined characteristics (and hence space dimension) would depend on the spe-
cific problem being addressed. For illustration purposes we have chosen two metrics, one topologic and
one dynamic, to construct a topo-dynamic space for the seven examined deltas. We have chosen the Num-
ber of alternative paths (Nap) as a surrogate for Topologic Complexity and the Leakage Index (LI) for
Dynamic Complexity. The resulting space is shown in Figure 8, which shows the median and interquartile
range (the range between 25% and 75%) for each space component and every delta. A general trend is
observed: the more topologically complex a delta is, the lower its dynamic complexity although the variabil-
ity of each component (coming from the collection of subnetworks in each delta) can be very large. This
trend is expected since the larger the topologic complexity, the smaller the proportion of external links
(border), which are able to interact with the rest of the delta, and therefore the lesser the possibility of
fluxes leaking out. The special case of a binary tree delta (with equal flux partition in each bifurcation) has
the minimum topologic complexity (Nap51), i.e., all the subnetworks consist of a linear path, and a dynamic
complexity LI 5 0.5, as illustrated in Figure 8. We observe that the Wax Lake and Mossy deltas are the closest
to that binary tree, depicting the almost bifurcating topology but also the more complex dynamics due to
flux sharing. In spite of this general trend, other interesting and more detailed properties can also be
observed. For example, deltas like Colville and Yukon have similar dynamic complexity, but Yukon is clearly
more complex in terms of topology. Likewise, Colville and Niger have comparable topologic complexity,
but Niger is more dynamically complex. A more detailed explanation of the meaning of those similarities
and differences has been presented in the previous sections, together with other metrics, but what we
attempt to put forward here is the idea of a simple representation, in which both the topologic and
dynamic complexity are able to position deltas in a common space to quantitatively compare and eventu-
ally classify them.

7. Relating the Concepts of Complexity and Vulnerability

In Tejedor et al. [2015], vulnerability was defined in terms of how changes in upstream links would affect the
shoreline fluxes. We now ask the question of whether and how the vulnerability of the system might relate
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to its complexity. We illustrate in Fig-
ure 9 the comparison between the
average Vulnerability Index Vi for the
different delta subnetworks as
defined in Tejedor et al. [2015, equa-
tion (14)] and (a) the topologic com-
plexity and (b) dynamic complexity.
We have chosen the Number of
alternative paths (Nap) as a surrogate
for topologic complexity and the
Conditional Entropy (CE) for dynamic
complexity. As expected, the higher
the Number of alternative paths, the
lower the vulnerability index but the
relation is not trivial (Figure 9a). Note
that in the vulnerability analysis, sin-
gle path subnetworks are the most
vulnerable since a change of flux in
that path propagates directly to the
outlet. At the same time, subnet-
works with multiple splitting and
joining paths are less vulnerable.
However, the degree of vulnerability
depends on the specific topology of
the subnetwork as indicated by the
variability associated with the values
for individual subnetworks. We also

observe the appearance of ‘‘unoccupied areas’’ in this space: there are no subnetworks with high (low) Num-
ber of alternative paths and high (low) vulnerability.

From Figure 9b we observe that the Vulnerability Index has a however general decreasing trend with the
dynamic CE, although the scatter around this relationship is more pronounced compared to that between

Figure 8. Topo-dynamic Complexity Space for deltas. We define a 2-D space where
the x axis corresponds to the dynamic exchange of the different subnetworks meas-
ured by the Leakage Index, and the y axis corresponds to the topologic complexity
measured by the Number of alternative paths from apex to outlet. Each colored
cross corresponds to a different delta, and the orange dot corresponds to a binary
tree. The vertical (horizontal) component of each cross runs from the 25th until the
75th percentile of the Number of alternative paths (Leakage Index). The filled dot for
each delta corresponds to the intersection point of the medians of both parameters:
Number of alternative paths and Leakage Index.

Figure 9. Relation of vulnerability to topologic and dynamic complexity. Vulnerability Index versus (left) number of alternative paths and versus (right) dynamic conditional entropy. As
expected, the more complex a delta is the more ‘‘robust’’ it is to change. This is because alternative paths and equitable flux distribution minimize the effects of a flux change in upstream
links to the flux reaching the outlet.
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the Vulnerability and the Number of alternative paths (Figure 9a). The observation that there are no low
(high) values of the vulnerability index when the dynamic CE is low (high), reinforces the inverse relation-
ship between vulnerability and complexity. We have chosen the weighted CE as a surrogate for dynamic
complexity since it can be interpreted as the flexibility of the subnetworks to deliver fluxes to the outlets.
Note that the vulnerability index cannot be uniquely determined by either the topologic or the dynamic
complexity separately, revealing the necessity of a multivariate analysis and reinforcing the need for a quan-
titative framework using both the topologic and dynamic complexities to better understand vulnerability.
The exact relationship between vulnerability and the topo-dynamic complexity is of course complicated. A
3D space that considers these three quantities jointly would be revealing but it is left for future research.

8. Spatially Explicit Metrics of Complexity: A Delta Width Function

All the metrics developed so far study subnetworks as units without reference to their complexity at specific
distances from the apex. It is of interest however to examine how this complexity might change as one
moves downstream from the apex to the shoreline. As a preliminary step in this direction we introduce

Figure 10. Spatially explicit metrics of complexity. (right) Schematic representation of contours radially scaled at normalized distances of
25%, 50%, 75% and 100% of the current shoreline. The squares show the intersections at the different distances. (a) Delta width function
for the seven deltas examined. (b) Each line represents the smoothened trajectory in the topo-dynamic complexity space (intersection of
the mean of both Leakage Index and number of alternative paths) for each radially scaled delta from the apex to the shoreline. Note, that
if actual data on shoreline and channel network evolution existed this plot would capture the progression of the topo-dynamic complexity
of the evolving delta.
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here the delta width function, defined as the number of links intersected at different distances from the
apex, similar to the width function for river networks defined as the number of streams at a given distance
from the outlet [Rodriguez-Iturbe and Rinaldo, 1997]. Figure 10 (right) illustrates this concept where for sim-
plicity distance is measured radially from the apex. Normalizing this distance by the maximum distance (dis-
tance from apex to the actual shoreline) and normalizing the number of links at a given distance by the
maximum possible number of links intercepted at any distance, Figure 10a shows the normalized width
function for the seven deltas. Also for comparison, the normalized width function of a binary bifurcating
tree is displayed on the same plot (notice that its staircase shape is due to the strict hierarchy of the tree
together with the assumption of equal link lengths at each level of generation). We observe that for tree-
like deltas (Wax Lake and Mossy), the normalized number of links is an increasing function of the normal-
ized distance achieving the maximum at the current shoreline similar to the behavior for the binary tree.
More complex deltas, on the other hand, attain a maximum before the current shoreline (e.g., Irrawaddy at
normalized distance � 0.78, Colville and Niger � 0.90, and Yukon � 0.95) except for Parana with maximum
located at the current shoreline. These results highlight the idea that Parana can be thought of as two deltas
in tandem [Smart and Moruzzi, 1971]: the upper half near the apex with a narrow region similar to braided
rivers containing the core links, and the lower half with a topology similar to a bifurcation-dominated delta.

The width function is a useful tool to differentiate among different configurations of delta networks. Figure
11 illustrates schematically the different trends of the width function and their interpretations. An increasing
trend for a range of distances from the apex is associated with divergent structures, i.e., dominated by bifur-
cations. On the other hand, a decreasing trend is indicative of convergent structures, i.e., confluence-
dominated area of the delta. Finally, if a region has a similar number of confluences and bifurcations, it is
indicative of a confined structure and will manifest itself as a constant width function. According to this clas-
sification, tree-dominated deltas such as Mossy and Wax Lake are characterized by mostly divergent struc-
tures. Loop-dominated deltas exhibit a convergent structure for a range of distances close to the shoreline.
Lastly, the Parana delta is a clear example of a delta with a confined structure where the width function is
fairly constant over a large part of the delta (normalized distance of 0.2–0.8 from the apex to the outlet; see
Figure 10a).

Although the spatial analysis of a mature delta cannot be used as a surrogate for its temporal evolution
(due to the possibility of internal rearrangement of channels caused by avulsions and major flooding) it can
still be used as a rough proxy. Figure 10b shows the evolution of the seven deltas in the topo-dynamic
space. The arrows indicate the direction of increasing distance from the apex. Each line corresponds to the
mean topologic complexity and to the mean dynamic complexity as we move from the apex to the shore-
line. From a spatial evolution perspective, deltas evolve by increasing their topologic complexity (in terms

Figure 11. Width function and delta network shape. Different trends can be observed in the delta width function (normalized number of
intersected links versus normalized distance from apex): (i) Divergent, illustrated by Delta A, for which the delta width function is an
increasing function of the distance from the apex, (ii) Convergent, illustrated in the lower portion of Delta B wherein the delta width func-
tion is a decreasing function of the distance from the apex, and (iii) Confined, illustrated by the middle portion of Delta C, for which the
delta width function remains constant as the distance from the apex increases.
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of Nap) and decreasing their dynamic complexity (in terms of LI). This is compatible with the idea that young
(old) deltas are topologically simple (complex) with subnetworks exchanging a large (small) proportion of
fluxes.

9. Conclusions and Open Problems

In Tejedor et al. [2015], we introduced a framework based on spectral graph theory, by which delta
channel networks can be studied as rooted directed acyclic graphs opening the door to efficiently
compute several properties of interest via simple algebraic manipulations. Specifically, we demon-
strated how upstream (contributing) and downstream (nourishment) subnetworks can be identified
and extracted by operations on the so-called Adjacency matrix, which uniquely characterizes the con-
nectivity of a graph. Approaching propagation of fluxes via a random walk on a network, steady state
solutions of fluxes were obtained via the Laplacian operator (similar to the known advection-
diffusion operations on a porous medium). The present paper builds on the results of spectral graph
theory to define a number of metrics that depict the topologic and dynamic complexity of delta
channel networks, a necessary step in the quest of understanding how the physical processes form-
ing a delta relate to the complex transport pathways they leave behind on the landscape. The topo-
logic complexity metrics we proposed depict three topologic characteristics: Loopiness, Structural
Overlapping and Entropy-based topologic complexity, while the dynamic complexity metrics are
grouped to capture three main dynamic features: Leakage, Flux Overlapping and Entropy-based
dynamic complexity. We used entropy concepts to quantify how the flux between links, constrained
by the organized patterns of splitting and rejoining, partitions the total entropy into Mutual Informa-
tion (rigidity) and Conditional Entropy (flexibility). Finally, we introduced the delta width function
that can be used to classify deltas according to their spatially explicit network configuration. All met-
rics were implemented and compared on seven diverse deltas.

The results have provided some valuable insights with main conclusions being:

1. Jointly, the topologic and dynamic complexity of a river delta places it in a unique position in a delta
topo-dynamic space, revealing that as topologic complexity decreases (e.g., fewer loops and simpler
subnetwork structures connecting the apex to the shoreline outlets) the dynamic complexity (flux
exchanged among subnetworks) increases. At the limit of minimum (maximum) topologic (dynamic)
complexity is a purely bifurcating tree and we see that the simpler and younger (e.g., Mossy and Wax
Lake) deltas are, in fact, closer to such a bifurcating delta in the topo-dynamic space. This is also
observed in all other metrics.

2. A spatially explicit interrogation of a delta in terms of its normalized number of links versus normalized
distance from the apex (delta width function) reveals that one can quantify easily deltas that are mostly
divergent, convergent or geologically confined, as well as transitions from one regime to another. This is
apparent in the mostly bifurcating (divergent) structure of the Wax Lake and Mossy deltas, and depicts
the mostly confined structure of the Parana delta.

3. A tapestry plot that records the topologic (link sharing between subnetworks) and dynamic (flux sharing
between subnetworks) structure of a delta as a whole system, can be used to identify coherent subunits
of a delta and provide a complementary representation of its spatial topologic and dynamic structure.

4. The topologic and dynamic complexity of deltas seem to relate to its vulnerability to change, i.e., to the
way a delta responds in propagating upstream disturbances to its shoreline outlets. Specifically, we
report an inverse nontrivial relationship between vulnerability and two indices of topologic (Number of
alternative paths) and dynamic (Conditional Entropy) metrics.

This study is seen as the beginning of further exploratory analysis of deltas to understand and quantify how
bio-physical processes, climate and geologic constraints, as well as human actions, change the topologic
and dynamic connectivity of deltaic surfaces and thus affect the way deltas will respond to future perturba-
tions. A few ideas for future work include:

1. Does the scale at which a delta channel network is abstracted (detail of channel mapping) affect the
quantitative metrics of topologic and dynamic complexity and, if yes, how do these metrics depend on
scale and at what scale do they stabilize?
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2. Are there any space-time scaling relationships in delta channel networks akin to those in tributary net-
works and braided rivers [e.g., Rinaldo and Rodriguez-Iturbe, 1997; Sapozhnikov and Foufoula-Georgiou,
1997]?

3. How does the complexity of delta channel networks evolve over time as the delta grows and how does it
depend on the main controlling factors (e.g., tides, wind waves), geologic constraints, vegetation, soil
cohesiveness, etc. [e.g., Caldwell and Edmonds, 2014; Edmonds and Slingerland, 2010; Nardin and Fagher-
azzi, 2012; Leonardi et al., 2013]?

4. Do anthropogenically influenced deltas differ (and how) from natural deltas in terms of their spatial pat-
terns and evolution as expressed in their topologic and dynamic complexity metrics? and

5. Do numerically simulated deltas based on detailed hydrodynamic models [e.g., Lesser et al., 2004] and/or
reduced complexity models [e.g., Liang et al., 2015a, 2015b] reproduce similar topologic and dynamic
complexity as real deltas and can those metrics of complexity be used as process diagnostics?

Appendix A: Finding the Number of Alternative Paths to an Outlet

Here we show how to compute the number of alternative paths from a given node within a delta to any
given outlet using simple matrix operations on the directed graph G that describes the delta. Two paths are
considered different if they differ by at least one nonshared link.

A1. Number of Alternative Paths
Consider a delta system represented by an acyclic rooted directed graph G with adjacency matrix A. Assume
that the system has k outlets indexed as i 51,. . .,k. Consider the matrix M 5 (I*-AT), where AT is the transpose
of the adjacency matrix, and I* is obtained from the identity matrix by placing zero in the position (uu) for
each outlet u. Then

i. The null space of M has dimension (multiplicity of the eigenvalue zero) equal to the number of outlets k;

ii. There exists a unique basis ci, i51,. . .,k, of this null space in RN (i.e., the basis consists of k vectors each
having N components) with the property

ci jð Þ5dij5
1; i5j

0; i 6¼ j
for j51; . . . ; k:

(

That is, the component of the vector ci is unity at the outlet i (ci(i)51) and zero at all other outlets (ci(j)50
for j 6¼i, j51,. . .,k).

iii. The nonoutlet vertex v belongs to the contributing subnetwork Si if and only if ci(v) 6¼ 0.

iv. The value ci(v) equals the number of alternative paths from vertex v to the outlet i.

A2. Proof
i. We observe that there exists at least one indexing of the vertices of the rooted directed acyclic graph G

such that each offspring vertex has a higher index than its parental vertex. In this indexing, the internal
vertices have indexes from 1 to (|V| - k) – |V| being the number of the vertices in G – and the outlets have
indexes from (|V| - k 11) to |V|. By construction, the matrix M is upper triangular, with ones on the main
diagonal for the first (|V| - k) rows and with the last k rows being zero. Using the rank-nullity theorem
[Meyer, 2000], dim(ker(M)) 5 k.

ii. Consider an eigenvector c that corresponds to the eigenvalue 0 of the matrix

M5(I*-AT). By the definition of the eigenvalue

ðI�-ATÞc5I�c-ATc50; (A1)

which implies

I�c5ATc: (A2)

In coordinate form, this becomes
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c vð Þ5
X

j

ajvc jð Þ for v that are not outlets:ð Þ (A3)

In other words, c (v) is the sum of the components c (ui) of all the offspring {ui} of v within G.

Next, we explicitly construct k independent eigenvectors that correspond to the zero eigenvalue of M.
Namely, the ith eigenvector ci will correspond to the outlet i 5 1,. . .,k. It is constructed by letting ci(i) 5 1
and ci(j) 5 0 for all the other outlets (that is for all j 51,. . .,k such that j 6¼ i) and computing the other compo-
nents using equation (A3). The linear independence of the vectors {ci} follows from the above construction
of the components for the outlet indices: only one vector has nonzero value at coordinate i 5 1,. . .,k. The
characteristic property (ii) holds by construction.

The above procedure produces k independent vectors. Since the dimension of the kernel of M is k, we con-
structed a basis for this kernel.

iii. Follows from construction of the vector components using equation (A3), as described in the proof of (ii)
above.

iv. We prove the statement by induction. The induction base is given by the observation that ci(i) 5 1 for
the outlet i of the subnetwork Si, which can be interpreted as the existence of a unique path from the
outlet to itself. For induction step we consider an interval vertex v and assume that for all its offspring uj

the number of alternate paths from uj to the outlet i is given by ci(uj). We have

ciðvÞ5au1vciðu1Þ1:::1auk vciðukÞ5ciðu1Þ1:::1ciðukÞ;

which is indeed the number of paths from v to i. This completes the proof.

A3. Remark
We notice that the above result is very similar to our statements on finding contributing and nourishing
subnetworks in the companion paper [Tejedor et al., 2015]. However, this result, unlike those in [Tejedor
et al., 2015], does not follow from the work of Caughman and Veerman [2006], since it involves the matrix M
that cannot be represented as D(I-S), with D being a nonnegative diagonal and S–stochastic.

Appendix B: Resistance Distance

A schematic representation of two subnetworks is shown in Figure A1: Subnetwork 1 (top) connecting the
Apex to the Outlet 1 (O1), and Subnetwork 2 (bottom) joining the Apex to Outlet 2 (O2). Both subnetworks
have the same number of links equal to 6 and the shortest path from the apex to the outlet consisting of 3
links. Here we want to introduce with more detail concepts related with Resistance Distance (RD) described
in section 3.1.2, and show differences in the way it quantifies the complexity of a subnetwork with respect
to the Number of alternative paths (Nap). Following Klein and Randic [1993], we can define Resistance Dis-
tance between the apex and the outlet, as the effective resistance between them when each link of the
graph is replaced by a 1 ohm resistor. In the theory of electrical circuits, the effective resistance is computed
based on the arrangement of the resistors:

1. Resistors in series: The connected resistors only share one junction (black square), so the current flows
through one resistor after the other (e.g., Resistors 1-2-3 and 4-5-6, see Figure A1, top). The effective
resistance of resistors in series is equal to the sum of the values of the individual resistors,

RSeries5
X

Ri: (B1)

2. Resistors in parallel: The connected resistors share two junctions, so the current flows at the same time to
both resistors (e.g., Resistors 1 and 4, 2 and 5, 3 and 4; see Figure A1, bottom). The effective resistance of
resistors in parallel can be computed as:

RParallel5
X 1

Ri

� �21

: (B2)

Therefore, the equivalent resistance from Apex to Outlet 1 and Outlet 2 are as follows:
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RA;O15
1
3

1
1
3

� �21

51:5 RA;O25
1
1

1
1
1

� �21

1
1
1

1
1
1

� �21

1
1
1

1
1
1

� �21

51:5

Note that both subnetworks have the same Resistance Distance. Resistance Distance can be interpreted as
the ‘‘effective distance,’’ in the sense that if multiple routes connect two vertices of a graph, these vertices
are closer to each other than if they are connected only by one route. Thus, the apex is three links apart
from both outlets 1 and 2, but the Resistance Distance is half of that number implying the existence of alter-
native routes between them. On the other hand, the Number of alternative paths between the apex and
outlet O1 is 2 (Paths: 1-2-3, and 4-5-6) while the Number of alternative paths between the apex and outlet
O2 is 2358 (Paths: 1-2-3, 1-2-6, 1-5-3, 1-5-6, 4-2-3, 4-2-6, 4-5-3, and 4-5-6).

Both metrics can be used to characterize the complexity of the topologic structure, but they are not equivalent.
While the Number of alternative paths is able to account for all the possible combinations of paths, Resistance
Distance looks at the alternative routes; penalizing some combinations that do not really add disjoint paths.

Notations

A adjacency matrix.
As symmetrized adjacency matrix.
auv element of A.
buv number of subnetworks link (vu) belongs to.
CEi Conditional Entropy in subnetwork i.
d depth of the binary tree.
duu elements of the degree matrix D.
DPDij Dynamic Pairwise Dependence between subnetworks i and j.
Din in-degree matrix.
Dout out-degree matrix.
DCEi Dynamic Conditional Entropy in subnetwork i.
DMIi Dynamic Mutual Information in subnetwork i.
Fi total flux in the links of subnetwork i.
Fu steady flux at vertex u.
Fuv steady flux at link (vu).
FSIi Flux Sharing Index of subnetwork i.
hi measure of uncertainty of state i.
H total uncertainty.
I* identity matrix with zeros in the elements corresponding to the outlets.
Lin in-degree directed graph Laplacian.
Lout out-degree directed graph Laplacian.

Figure A1. Illustration of two subnetworks with the same number of links but different topologic structure. Subnetwork 1: Apex connects
to the outlet 1 (O1) via two paths, each composed of three links (note that the presence of vertices in the path implies for a delta system
that other links (dashed lines) initiate at each of those vertices but drain to another outlet). Subnetwork 2: Apex drains to the outlet 2 (O2)
via a more intricate structure.
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Lout
W weighted out-degree directed graph Laplacian.

LIi Leakage Index in subnetwork i.
LSIi Link Sharing Index among subnetworks i.
MIi Mutual Information in subnetwork i.
n number of subnetworks to which a given link belongs to.
No number of outlets.
Ni number of links/vertices in subnetwork i.
Nap,i Number of alternative paths in subnetwork i.
pi probability that state i occurs.
pij probability of transition from state j to state i.
puv probability that the package of flux is traveling from vertex v to vertex u.
pu. probability of a package of flux arriving at vertex u.
p.v probability of a package of flux leaving vertex v.
pj!i probability of transition from j to i given that the initial state is j.
RDi Resistance Distance in subnetwork i.
Si subnetwork i.
Sij intersection of links/vertices in subnetworks i and j.
TPDij Topologic Pairwise Dependence between subnetworks i and j.
TCEi Topologic Conditional Entropy in subnetwork i.
TMIi Topologic Mutual Information in subnetwork i.
u vertex.
Vi global vulnerability of outlet subnetwork i.
wuv element of W.
W weighted adjacency matrix.
ciðvÞ proportion of flux at vertex v that arrives at outlet i.
C Moore-Penrose pseudoinverse of the Laplacian.
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