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This article explores the problem of short-term earthquake predic-
tion based on spatio-temporal variations of seismicity. Previous
approaches to this problem have used precursory seismicity pat-
terns that precede large earthquakes with ‘‘intermediate’’ lead
times of years. Examples include increases of earthquake correla-
tion range and increases of seismic activity. Here, we look for a
renormalization of these patterns that would reduce the predictive
lead time from years to months. We demonstrate a combination of
renormalized patterns that preceded within 1–7 months five large
(M > 6.4) strike-slip earthquakes in southeastern California since
1960. An algorithm for short-term prediction is formulated. The
algorithm is self-adapting to the level of seismicity: it can be
transferred without readaptation from earthquake to earthquake
and from area to area. Exhaustive retrospective tests show that the
algorithm is stable to variations of its adjustable elements. This
finding encourages further tests in other regions. The final test, as
always, should be advance prediction. The suggested algorithm
has a simple qualitative interpretation in terms of deformations
around a soon-to-break fault: the blocks surrounding that fault
began to move as a whole. A more general interpretation comes
from the phenomenon of self-similarity since our premonitory
patterns retain their predictive power after renormalization to
smaller spatial and temporal scales. The suggested algorithm is
designed to provide a short-term approximation to an intermedi-
ate-term prediction. It remains unclear whether it could be used
independently. It seems worthwhile to explore similar renormal-
izations for other premonitory seismicity patterns.

We consider here a particular approach to earthquake
prediction: prediction of large earthquakes based on

changes of seismicity in the intermediate magnitude range. The
approach we follow here is reviewed in ref. 1. It is focused on well
defined prediction algorithms that can be validated by advance
prediction. Such a focus is essential both for a fundamental
understanding of crustal dynamics and enhancing earthquake
preparedness.

Previous studies of observed and modeled seismicity have
found a variety of spatio-temporal patterns of medium-
magnitude seismicity that emerge as a large earthquake ap-
proaches. Well established are ‘‘intermediate-term’’ patterns,
which emerge years before a large earthquake and within
hundreds of kilometers from the incipient source (2–10, 12–19).¶
Here, we introduce short-term patterns that emerge with a lead
time of months. Our working hypothesis is that some short-term
patterns may be defined by renormalization of intermediate-
term ones, so that they differ only in the values of adjustable
numerical parameters. We consider patterns that reflect two
specific premonitory changes of seismicity in the intermediate
magnitude range: increases of earthquake correlation range and
increases of seismic activity.

Premonitory increases of earthquake correlation range were
recognized during the last decade. Several patterns reflecting the
rise of correlation range have been suggested (6, 14, 20–24).

Here we consider two of them, ROC (range of correlation) and
Accord, which were found first in a model (20, 21) and then in
observations (22, 23). The pattern ROC was observed months
before large earthquakes in the Lesser Antilles (22), which
makes it especially relevant to the present study.

Increases of seismic activity years to decades before a large
earthquake have been well documented during the last century
for seismic regions worldwide (2, 5, 12, 13, 15, 17, 18, 25–28).
Here, we consider a specific pattern U reflecting the rise of
seismic activity; it was introduced into earthquake prediction
research by Schreider (29).

Data
We use the standard Southern California Seismographic Net-
work earthquake catalog produced by the California Institute of
Technology (30). The analysis is carried out within the area
shown in Fig. 1 during 1960–2001. Targets for prediction are the
five large (M $ 6.4) strike-slip earthquakes listed in Table 1 and
mapped on Fig. 1.

Abbreviation: ROC, range of correlation.
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¶Levshina, T. & Vorobieva, I. (1992) EOS Trans. Am. Geophys. Union 73, 382 (abstr.).

Fig. 1. Area considered for analysis. Circles mark large earthquakes. The area
S is considered for earthquakes with 6.4 # M , 7 (the Borrego Mountain, 1968;
Imperial Valley, 1979; and Superstition Hills, 1987). The union of areas S and
N (SN) is considered for the earthquakes with M $ 7 (Landers, 1992 and Hector
Mine, 1999). Fault map after Faults of Southern California, Southern California
Earthquake Data Center and ref. 31.
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Evolution of seismicity before the large earthquakes is ana-
lyzed within the two areas shown in Fig. 1. For the earthquakes
with magnitude below 7 (Borrego Mountain, 1968; Imperial
Valley, 1979; and Superstition Hills, 1987) we consider the area
S, which includes the southern reaches of the San Andreas fault
network. The union of the areas S and N (denoted by SN) is
considered for the larger Landers (1992) and Hector Mine
(1999) earthquakes. The area SN is the principal plate-boundary
fault network of southern California and northwestern Mexico,
south of the Garlock fault. The northeastern margin of this area
roughly corresponds to the Landers–Mojave earthquake line (32).

The areas considered are chosen in one of many possible ways.
This nonuniqueness is also the case with other elements of the
subsequent analysis: subdivision of the areas (Fig. 2), the choice
of premonitory seismicity patterns, the formalization of these
patterns (next section), choosing the values of numerical param-
eters (Table 2), etc. The influence of these free choices on the
prediction results is analyzed in Stability Test: The Error Diagram.

Premonitory Seismicity Patterns: Definitions
Previous studies have found a family of premonitory seismicity
patterns with common scaling and similar definitions (1). Each
of those patterns is captured by a specific functional F(t) defined
on a sequence (tj, Mj, xj), j 5 1, 2, . . . of main shocks within a
given area and magnitude range Mj . m0. Here tj is the
occurrence time of the jth main shock, Mj its magnitude, and xj
coordinates of epicenter. The lower magnitude threshold m0 is
determined by the condition n(m0) 5 n0 yr21, where n(M) is the
average annual number of main shocks with magnitude M or
larger, n0 is an adjustable parameter. The same value of n0 may
correspond to different lower magnitude thresholds due to
spatial and temporal variations on the seismic activity; this

dependence introduces self-normalization of premonitory pat-
terns (8, 9). Emergence of the pattern is defined by the condition
F(t) $ CF. The patterns are defined on the earthquake sequence
with aftershocks eliminated. The identification of aftershocks is
made by the coarse windowing introduced in refs. 33 and 34. For
brevity, remaining earthquakes are called the main shocks.

Prediction is targeted at large earthquakes defined by the
condition Mj $ M0. Previous studies suggest that the lower
magnitude m0 of the earthquakes that form premonitory pat-
terns is 3–4 units less than the lower magnitude M0 of the
earthquakes to be predicted (1).

The pattern ROC reflects the nearly simultaneous occurrence
of medium-magnitude main shocks at large distances (20–22).
The functional R(t), which captures this pattern, is defined within
a narrow sliding time window (t 2 TR, t). It counts the number
of pairs (i, j) of main shocks such that rij $ r0; here rij is the
distance between the epicenters of the main shocks i and j. The
threshold r0 is normalized by the minimal magnitude M0 of the
earthquakes targeted for prediction: r0 5 Az10BM0. Such normal-
ization is used in the well established prediction algorithms CN,
M8, and SSE (8, 9).¶ The coefficients are A 5 0.03, B 5 0.5.¶ We
take M0 5 6.4 in the area S and M0 5 7.0 in SN. Emergence of
the pattern ROC is defined by the condition R(t) $ CR, CR being
an adjustable parameter.

The pattern Accord reflects a nearly simultaneous rise of
seismic activity in several parts of the area considered (20, 21,
23), hence its name. The area is divided into K sub-areas, and the
functional A(t), which captures the pattern, is defined as the
number of sub-areas, which have at least one earthquake within
a sliding time window (t 2 TA, t). This definition is a marginal
case of the following general one (20): for each sub-area k 5
1, . . . , K its seismic activity is estimated by a chosen measure in
a sliding time window. High activity is defined by the condition

Fig. 2. Divisions into sub-areas by a coarse formal grid (a) and seismicity and fault-based grid (b).

Table 1. Large earthquakes targeted for prediction

Location Date °N, °W ML(SCSN)* MS(PDE)†

Borrego Mountain April 9, 1968 33.19, 116.12 6.5
Imperial Valley Oct. 15, 1979 32.61, 115.31 6.4 6.9
Superstition Hills Nov. 24, 1987 33.01, 115.85 6.6 6.6
Landers June 28, 1992 34.20, 116.43 7.3 7.6
Hector Mine Oct. 16, 1999 34.59, 116.27 7.1 7.4

*Ref. 30; SCSN, Southern California Seismographic Network.
†PDE, Preliminary Determination of Epicenters, ftp:yyghtftp.cr.usgs.govypuby
pde.

Table 2. Adjustable parameters of the prediction algorithm

n0, yr21

TR,
days CR

TA,
days QA, % k CU, yr21

20 (40) 10 5 15 99 15 2
15–30 (30–60) 5–30 3–8 7–30 98–99 5–30 0.8–10

Values used in Patterns ROC, Accord, and U vs. Large Earthquakes (Figs. 3
and 4) are given in bold. The variation ranges for the stability tests (Fig. 5) are
given in plain font. Values of n0 in brackets refer to the patterns Accord and
ROC within the area SN.
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that this measure exceeds a certain threshold. The functional
A(t) is defined as the number of the sub-areas where activity is
high at the moment t.

Emergence of the pattern Accord is defined by the condition
A(t) $ CA. The threshold CA is adapted to the level of seismicity
by a binomial model. Let p be the probability to have at least one
main shock within a given sub-area during a time interval TA.
With a uniform distribution of earthquakes, the probability that
at least A out of K sub-areas have one or more main shocks is
P(A) 5 Sa$A pa(1 2 p)K2a with p 5 n0zTAzK21. We chose the
threshold CA as the QA percentile of the distribution P.

Seismicity in this model is assumed to be (i) uniformly
distributed and (ii) independent in each sub-area. Both of these
assumptions lead to overestimation of the probability P(A) for
large A, so for high QA the functional A(t) exceeds the threshold
CA more rarely than suggested by the model. Thus, we use a
reliable lower estimation. Note that the level of seismic activity
is used in many earthquake prediction algorithms (1, 2, 4, 5, 7–9,
12–15, 17–19),¶ although for much wider windows than consid-
ered here: years instead of weeks.

We consider two alternative divisions into sub-areas. One is a
coarse grid oriented along the southern San Andreas fault (Fig.
2a). An advantage of this division is its simplicity and indepen-
dence of nonunique interpretations of fault maps and seismicity.
This simplicity is achieved at the cost of disregarding this
potentially relevant information. To use this information we
introduce an alternative division (Fig. 2b) where each sub-area
roughly corresponds to a relatively large fault. The borders
between sub-areas are chosen to avoid dense clouds of epicen-
ters. This division takes into account the fault network and
territorial distribution of seismicity at the cost of nonuniqueness
in transforming these data into boundaries of sub-areas.

The pattern U reflects the increase of the earthquake occur-
rence rate. It is captured by the functional U(tj) 5 1y(tj 2 tj2k11),
j 5 k, k 1 1, . . . defined at the occurrence times tj of main shocks
used for analysis. Here the denominator is the length of the
minimal time interval, which covers the last k earthquakes.
Emergence of the pattern U is defined by the condition U(tj) $
CU, CU being an adjustable parameter.

Patterns ROC, Accord, and U vs. Large Earthquakes
In this section we demonstrate the emergence of the above
patterns before the five large earthquakes we consider (see Table
1, Fig. 1). We consider 5-year intervals, each ending at one of the
large earthquakes (5 years is a typical lead time for the inter-
mediate-term premonitory seismicity patterns). Analyzing seis-
micity before the Hector Mine earthquake, we eliminated sub-
areas N1, N2, and N3 (Fig. 2b) where activity rose after the

Landers earthquake. Thus we avoided mixing post-Landers
activity, decaying but still high, with pre-Hector Mine activity.

Functionals R(t), A(t), and U(t) have been computed with the
values of the adjustable parameters indicated in bold in Table 2
and sub-areas shown in Fig. 2b. The corresponding values of the
self-adapted thresholds m0, r0, and CA calculated from the
adjustable parameters are listed in bold in Table 3. They are
determined within the time intervals (tf 2 5 yr, tf 2 1 yr), tf being
the moment of a large earthquake. The last year is eliminated
from the statistics, since our goal is to find what changed there
compared with previous years. For area S we take n0 5 20 yr21,
as in the widely used algorithm M8 (8). In the area SN, which
contains twice as many sub-areas as S, we take n0 5 40 yr21 for
the patterns ROC and Accord. This procedure ensures that both
areas have the same average number of main shocks per
sub-area.

Fig. 3 shows the behavior of each functional before the five
large earthquakes considered. By definition, a pattern emerges
when the functional is equal or larger than the respective
threshold (shown by horizontal dotted line in Fig. 3). Patterns
emerge sporadically within isolated narrow time intervals. Du-
ration of emergence intervals is up to weeks for patterns ROC
and Accord and up to months for pattern U.

The pattern U precedes each large earthquake by 2 years or
less. Besides, it emerges 4.5 years before the Superstition Hills
earthquake. Thus, this pattern still remains an intermediate-
term one. At the same time, its lead time is much shorter than
5 years, which is typical for most of the patterns reflecting
premonitory rise of activity (1).

The patterns ROC and Accord precede four large earthquakes
(Borrego Mountain, 1968; Imperial Valley, 1979; Landers, 1992;
and Hector Mine, 1999) by 3 months or less and the Superstition
Hills earthquake by 7 months. These patterns also emerge with
a larger (up to 58 months) lead time before the Borrego
Mountain, Superstition Hills, and Landers earthquakes. In the
previous applications the lead time was also months for ROC
(22) but it was years for Accord (23).

The patterns ROC and Accord do not seem promising as
individual short-term precursors since they would produce many
false alarms. Next, we demonstrate that these patterns give better
performance when they emerge in the wake of the pattern U. To
formalize this observation, we formulate the following predic-
tion algorithm:

(i) Whenever the pattern U emerges [U(t) $ CU], a waiting
period is declared for the subsequent time interval tU.

(ii) When both the patterns ROC and Accord emerge [R(t) $
CR and A(t) $ CA] during a waiting period, an alarm is declared
for the subsequent time interval tA.

Table 3. Self-adapted thresholds calculated from adjustable parameters

Pattern Threshold

Large earthquakes

Borrego
Mountain

Imperial
Valley

Superstition
Hills Landers

Hector
Mine

ROC m0 2.5 3.0 2.9 2.9 3.0
2.5–2.8 2.9–3.1 2.7–3.0 2.7–3.0 2.7–3.1

r0, km 47 47 47 95 95
16–67 16–90 16–80 32–140 32–135

Accord m0 2.5 3.0 2.9 2.9 3.0
2.5–2.8 2.9–3.1 2.7–3.0 2.7–3.0 2.7–3.1

CA 4 4 4 6 6
3–6 3–6 3–6 4–8 4–8

U m0 2.5 3.0 2.9 3.2 3.3
2.5–2.8 2.9–3.1 2.7–3.0 3.1–3.3 3.1–3.4
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The performance of this algorithm is shown in Fig. 4, which
consists of five panels, one for each target earthquake. The top
line in each panel shows alarms produced by the algorithm. The
dark bars in three bottom lines show emergence intervals of the

patterns ROC, Accord, and U. Notable is the temporal correla-
tion between the patterns, particularly ROC and Accord. Waiting
periods declared after the emergence of the pattern U are
marked by light shadowing. Parameters of the functionals R(t),

Fig. 3. Individual performance of premonitory patterns. Functionals R(t), A(t), and U(t) during 5-year intervals ending at a large earthquake. The five lines in
each panel correspond, from top to bottom, to the large earthquakes in the order of occurrence: Borrego Mountain, 1968; Imperial Valley, 1979; Superstition
Hills, 1987; Landers, 1992; and Hector Mine, 1999. Functionals R(t) and A(t), by definition take nonnegative integer values; functional U(t) takes real positive
values. Dashed horizontal lines show the thresholds CU, CA, and CR. See details in Patterns ROC, Accord, and U vs. Large Earthquakes.

Fig. 4. Short-term alarms. Each panel shows a 5-year interval ending with a large earthquake. The top line shows (by checkered bars) the alarms retrospectively
determined by the algorithm. The three lower lines correspond to premonitory patterns indicated at the left. Dark bars show the time intervals when a pattern
emerges. Light bars in the bottom line mark waiting periods.

Keilis-Borok et al. PNAS u December 24, 2002 u vol. 99 u no. 26 u 16565

G
EO

PH
YS

IC
S



A(t), and U(t) are the same as in Fig. 3, tU 5 24 months and tA
5 7 months. The resulting lead times between the declaration of
an alarm and the subsequent large earthquake vary from 49 to
205 days.

Fig. 4 might suggest an alternative algorithm, based on the fact
that all three patterns emerge in arbitrary order within 7 months
before a large earthquake. What would be the outcome of this
alternative algorithm? Generally, what would be the outcome of
prediction if we vary each of its adjustable elements? We answer
this question in the next section by exploring a wide range of
possible alternatives.

Stability Test: The Error Diagram
Here, we evaluate the stability of our algorithm: vary its adjust-
able elements, repeat prediction, and compare the results on an
error diagram. The error diagram was introduced into seismo-
logical studies by G. Molchan (35); its definition follows.

Consider a prediction algorithm applied on a certain territory
during the period T years. Suppose that A alarms are declared
and Af of them are false. N strong earthquakes occurred and Nf
of them are not covered by alarms (unpredicted). The alarms
cover altogether the time D year. Performance of the algorithm
is characterized by three dimensionless errors: the relative
duration of alarms, t 5 DyT; the fraction of failures to predict,
n 5 NfyN; and the fraction of false alarms, f 5 AfyA. The error
diagram shows the values of t, n, and f for different versions of
a prediction algorithm.

We have considerably varied the adjustable elements of the
algorithm. In particular, we have tested four alternative rules for
alarm declaration based on interplay of the three individual
patterns; four versions of sub-areas (used to define the pattern
Accord) of different size and orientation; and a wide range of
adjustable numerical parameters varied uniformly within the
ranges indicated in the second line of Table 2. The corresponding
ranges of self-adapted thresholds m0, r0, and CA are indicated in
Table 3. Note that the wide ranges of variation for the parameter
n0 (say, from 15 to 30 in area S) correspond to modest ranges of
variation for the magnitude threshold m0 (typically, 0.3 units of
magnitude).

Altogether we have considered .1,000 sets of algorithm’s
adjustable elements. Prediction was done with each of them; the
results are juxtaposed in the error diagram of Fig. 5. The error

diagram shows that prediction performance is reasonably stable:
23% of the versions considered predict all five large earthquakes
with no false alarms (corresponding points lie at the origin of the
error diagram), and 60% give the error score Af 1 Nf # 1 (no
more than one false alarm or one unpredicted earthquake).
Parameters corresponding to these predictions fill a reasonably
wide domain in the parameter space. The average duration of
alarms is shorter than 5 months per earthquake. The limits where
the good performance fails (say, correspond to Af 1 Nf $ 3) are
reached in 20% of the versions. Other results may be summed up
as follows:

(i) The most stable is prediction of the Landers earthquake,
which is predicted by 94% of the variants considered; the least
stable is prediction of the Borrego Mountain earthquake (79%).

(ii) Important for our prediction is the spatial scale of the
sub-areas (20–50 km) and not a particular position of borders.
This notion is supported by the fact that formal sub-areas (Fig.
2a) and those based on the fault map and seismicity (Fig. 2b) give
similar performance.

(iii) The rise of activity (pattern U) and rise of correlation
range (patterns ROC and Accord) indeed play different roles in
the transition to a large earthquake. This finding is supported by
the fact that the prediction rule suggested earlier (uniform use
of the individual patterns) gives more errors than the rules that
use ROC and Accord differently from U.

More details are given in Table 4 and Supporting Text, which
are published as supporting information on the PNAS web site,
www.pnas.org.

Discussion
We renormalized in time and space three previously known
premonitory seismicity patterns, which reflect the increase of
seismic activity and increase of earthquake correlation range. A
combination of the renormalized patterns provides, in retro-
spect, a short-term prediction (with lead time of months) of the
five largest earthquakes in Southeastern California, including the
Landers and Hector Mine earthquakes.

What Is a Possible Physical Interpretation of a Premonitory Earth-
quake Sequence Introduced Here? Rise of earthquake correlation
range indicates that the blocks surrounding a soon-to-break fault
start to aggregate, tending to move as a whole. The pattern

Fig. 5. Error diagram. The diagram compares performance of the prediction algorithm for 1,008 sets of its adjustable elements (see definition in Stability Test:
The Error Diagram). Values n 5 0.2, 0.4, etc. correspond to Nf 5 1, 2, etc. failures to predict. Interval 0.1 on the t scale is 30 months (6 months per large earthquake).
Numbers on the right show how many sets correspond to a given ( f, n) combination. Numbers on the left show how many sets correspond to a given value of
n and interval of t. The line n 1 t 5 1 shown (Left) corresponds to a random binomial prediction: alarm is declared at each time step with probability t. Note
the stability of performance: 235 (23%) variants predict all five earthquakes with no false alarms (an example marked by the large circle is shown in Fig. 4); 270
(26%) variants predict all five earthquakes with one false alarm; 92 (9%) variants predict four earthquakes with no false alarm.
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Accord captures this phenomenon on a relatively high level of
averaging. The pattern ROC captures this phenomenon without
any spatial averaging, by the emergence of individual earth-
quakes. The displacement rate should be sufficiently large, which
is ensured by the general rise of seismic activity (pattern U).

These processes are not permanent; they are realized in
sporadic episodes reflected by distinct peaks of the functionals.
Each peak lasts for weeks (patterns ROC and Accord) or months
(pattern U). Similar irregularity on a larger scale is exhibited by
the intermediate-term patterns.

Why Renormalization? It can be naturally explained by the phe-
nomenon of self-similarity, a general feature of many nonlinear
systems. Such systems exhibit well defined behavior patterns
(36–38), which emerge in similar form on different scales.
Generally, the renormalization to short-term scales is well
explored in the modeling of critical transitions, although not in
connection with prediction problem (39–44). If our results
reflect reality, the premonitory patterns we analyzed exhibit a
specific kind of similarity: they retain their predictive power in
different spatio-temporal scales.

Further Tests. Exhaustive retrospective tests show that the sug-
gested algorithm is reasonably stable to variations of its adjust-
able elements (numerical parameters being only part of them).
This finding encourages its further test in other regions. Such
tests are facilitated by the fact that the algorithm is self-adapting
to the level of background seismicity. Results of such tests for
other parts of California, the Eastern Mediterranean, and Japan
will be published elsewhere.

Transition from Intermediate- to Short-Term Prediction? By defini-
tion, our algorithm can be used as a second approximation to an
intermediate-term one, which would provide initial alarms
within several hundred kilometers and several years. It remains
unclear whether our algorithm can be used independently.

A consecutive approximation approach was pioneered with
singular success in prediction of the Haicheng earthquake in
China in 1975 (28). Kossobokov et al. (45) describe a premon-
itory short-term rise of activity in areas of intermediate-term
alarms of the algorithm MSc in the Pacific Rim and California.

What Do We Rely On? The quest for short-term earthquake
precursors has been less than successful so far. A multitude of
such precursors have been suggested over the decades, but hardly
any were validated by systematic applications, with a reproduc-
ible count of errors and successes. Many current efforts are
focused on electromagnetic precursors (11). Our hope rests on
taking advantage of the following previous findings: extents of
averaging of seismicity in time and space; normalized self-
adapting definitions; the recently introduced patterns, which
reflect increase of earthquake correlation range; and a consec-
utive approximation approach.

We are grateful to D. Turcotte, L. Knopoff, A. Gabrielov, and G. Axen
for insightful, hard, and constructive criticism. G. Axen provided in-
valuable consultations about geological description of the areas consid-
ered. This study was supported by The 21st Century Collaborative
Activity Award for Studying Complex Systems from the James S.
McDonnell Foundation.
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Supporting Text

Stability Analysis. The following variations of the algorithm have been considered.

Definition of the algorithm: 
a) In rule ii the condition “…both the patterns ROC and Accord emerge…” is

replaced by the weaker condition, “…pattern ROC or Accord emerges….”
b)  Rule ii is changed: an alarm is declared when patterns ROC and Accord emerge

not only after the emergence of the pattern U but also within ∆ days before it.
c) The three patterns considered are used in a uniform way: whenever either pattern

emerges, a waiting period is declared for a subsequent time interval τRAU = 7 months. An
alarm is the intersection of the three waiting periods triggered by each pattern.

d) Alternative normalization of the threshold r0 in the pattern Accord: r0 is defined as
the QR percentile of the rij distribution. 

Division into sub-areas:
e) Four different versions of areas and sub-areas are considered. They include

variation of the size (from 20 to 50 km) and orientation of the sub-areas.
f) The territory activated by the Landers earthquake was not eliminated from

seismicity preceding the Hector Mine earthquake.

Adjustable numerical parameters:
g) Variations are indicated in plain font in Table 2.

Next, we describe in detail the prediction performance corresponding to described
variations of the adjustable elements of the algorithm. This might provide insight for a
reader interested in the development of alternative algorithms. The letters in italics refer
to the variations described above. 

(i) All the target earthquakes are predicted with no false alarms by 23% of the
versions considered. This includes: different rules for alarm declaration (a-c); different
definitions of r0 (d); variations of areas and sub-areas (e), retaining the area of activation
after the Landers earthquake (f); and, finally, a considerable variation of numerical
parameters (g): n0 ranges from 17.5 to 22.5; TR from 5 to 30 days; CR from 3 to 8; TA

from 7 do 30 days; both distinct values of QA, 98% and 99%; κ from 10 to 25, CU from
1.0 to 4.0 yr-1.

(ii) One false alarm or one failure to predict is obtained for 36% of the versions. This
includes the variations indicated in i, and broader limits for n0 (15-25), κ (5-30), and CU
(0.8  to 10.0 yr-1).

(iii) Two errors are obtained for 21% of the versions.
(iv) Failure of performance (three to seven errors) is reached for the remaining 20%

of the versions.



(v) To sustain zero failures to predict is easier than zero false alarms: 58% of
variations have no failures to predict with two or fewer false alarms; and only 39% have
the opposite relation, no false alarms and two or fewer failures to predict. 

Statistics of errors with different definitions of alarms and different divisions into
sub-areas is summarized in Table 4.
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Table 4. Statistics of errors for different versions of the algorithm (in %) 

Version of the algorithm
0 error 1 error 2 errors

No false alarms at 0-

2 failures to predict

No failures to predict

at 0-2 false alarms

Alarm definition

Rule A & R

Rule A | R 

Rule A & R & U

30

24

1

62

63

13

80

84

67

60

31

11

49

72

42

Rule  A & R 

τU  = 24 months, ∆ = 0

τU  = 24 months, ∆ = 1.5 months

τU  = 3 months, ∆ = 1.5 months

27

27

38

63

66

57

80

81

79

49

53

70

56

51

42

Rule A | R

τU  = 24 months, ∆ = 0

τU  = 24 months, ∆ = 1.5 months

τU  = 3 months, ∆ = 1.5 months

8

28

35

60

67

63

83

86

83

11

34

47

76

74

66

Areas and sub-areas

Formal grid

Seismicity & fault-based grid

15

31

55

63

77

80

31

47

54

61

We see that both the A & R and A | R rules give about the same total count of errors.
By definition, the first rule gives relatively more failures to predict, and fewer false
alarms. Rule A & R & U gives more alarms of both kinds. The three combinations of τU
and ∆ also give a similar overall performance, i.e. 80-85% of cases with two or fewer
errors. The rule A & R with a short waiting time τU  = 3 months, ∆  = 1.5 months gives the
largest number of predictions with no false alarms and zero to two failures to predict.
With a long waiting time, τU  = 24 months, the score reverses to no failures to predict and
zero to two false alarms. Using similar tables as above, we studied the variation of each
adjustable numerical parameter. The algorithm naturally is most sensitive to the variation
of the parameter n0 that participates in the definition of all the three patterns, scaling the
lower magnitude cutoff and the thresholds CA. Larger values increase the number of false
alarms, smaller values increase the number of failures to predict. Different definitions of
the threshold r0 in general give similar total rate of errors, except for a few marginal
cases. Parameter TR is also not critical: additional errors are often easily compensated for
by the change of the threshold CR. The value TR = 10 days gives more stable results than
TR = 7 days, used initially. Variation of the parameter TA does not affect the rate of errors
much, partly because the changes are balanced by the self-adapting parameter CA. Values
of 15 and 20 days are a little better than others. The value QA = 0.99 gives on average a



better performance. The parameter κ (used in the definition of the pattern U) gives
similar performance in the range from 10 to 20, with proportional change of the threshold
CU. This corroborates the initial choice κ = 15.
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