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The dynamics of a two-dimensional site percolation model on a square lattice is studied using the hierar-
chical approach introduced by Gabrielovet al. fPhys. Rev. E60, 5293 s1999dg. The key elements of the
approach are the tree representation of clusters and their coalescence, and the Horton-Strahler scheme for
cluster ranking. Accordingly, the evolution of the percolation model is considered as a hierarchical inverse
cascade of cluster aggregation. A three-exponent time-dependent scaling for the cluster rank distribution is
derived using the Tokunaga branching constraint and classical results on percolation in terms of cluster masses.
Deviations from the pure scaling are described. An empirical constraint on the dynamics of a rank population
is reported based on numerical simulations.
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I. INTRODUCTION

The percolation model is probably the simplest and best
studied system that experiences asgeometricald phase transi-
tion of the second kindf1g. It is widely used as a toy model
for spatially distributed stochastic processes, such as diffu-
sion in disordered media, forest fires, gelation, semiconduc-
tion, etc. f1,2g. Importantly for our study, the percolation
model presents a transparent mechanism of the process of
hierarchical aggregationscoagulationd. This process has been
actively employed for describing the essential properties of
material fracture and earthquake nucleationf3–10g, starting
from the pioneering works of Allegreet al. f11g and Newman
and Knopofff12–14g. In this paper we describe the evolution
of percolation model in terms of an inverse cascade of hier-
archical cluster aggregation.

An early idea of hierarchical aggregation was introduced
by Newman and Knopoff in the “crack-fusion” model for
repetitive cycles of large earthquakesf12–15g. Their model
focused on the processes of fusion of small cracks into suc-
cessively larger ones, accommodating the influence of main-
shocks and aftershocks, juvenile crack genesis from tectonic
stresses, crack healing, and anelastic-creep-induced time de-
lays, plus other effects. Turcotteet al. f16g have reinstated
this line of research considering a log-binned description of
hierarchical aggregation and performing numerical tests to
study its scaling properties. Gabrielovet al. f17g have em-
ployed the Horton-Strahler hierarchical rankingf18,19g to
construct an exactly solvable model of a general inverse cas-
cade process. The Horton-Strahler ranksssee Sec. II Cd that
came from hydrology and have been not well known in
physical applications happened to be more natural than clus-
ter massesssizes, areasd in describing the aggregation pro-

cess. Moreover, the ranks are shown essential for formulat-
ing the analytical modelsf17g. Recent efforts deal with
studying the aggregation dynamics and its various scalings
via exactly solvable hierarchical models and extensive simu-
lations f20g.

Below we focus on the evolution of the first spanning
cluster in the classical site-percolation model, and decribe it
as a consecutive hierarchical fusion of smaller clusters into
larger ones. It is noteworthy that we are interested not in a
final solution of a percolation state, but in the evolutionary
path leading from the juvenile single-particle clusters to a
self-similar population of clusters of arbitrarily large size
slimited by the finiteness of the latticed, the percolation clus-
ter included. Thus we depart from the steady-state assump-
tion of f16,17,20g as well as from the asymptotic focus on
the percolation onset typical for the classical percolation
studiesf1g.

Specifically, we followf17g and represent each cluster by
a time-oriented tree that reflects the history of cluster forma-
tion. The model dynamics is then described in terms of the
corresponding trees using the well-developed theory of hier-
archical scaling complexitiesf19,21g. An important role is
played by the Horton-Strahler scheme which provides a
natural ranking for the tree-based structures. Another impor-
tant element is the Tokunaga classification which defines a
special subclass of trees with self-similar branching. A large
number of hierarchies observed in nature are shown to be
Tokunaga treesf19g; this is also the case for the clusters in
percolation modelsf17,20g. We use the Tokunaga constraint
together with classical results on percolation dynamicssin
terms of cluster massesd to derive time-dependent scaling
laws for the rank distribution of clusters. Importantly, we
report a three-exponent scaling for the dynamics of a popu-
lation of clusters of a given rank, in deviation from the two-
exponent scaling well known for the population of a given
massf1,22g. We also analyze deviations from the pure scal-
ing and confirm our results by numerical simulations.

The inverse cascade and aggregationscoagulationd pro-
cesses are important for evolution of many natural hazardous
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processes: earthquakes, landslides, and forest fires are argued
to follow the hierarchical aggregation dynamicsf20,23g. A
general review of the theory and models of kinetics of irre-
versible aggregation is given by Leyvrazf24g. An alternative
approach to analytical modeling, based on ideas fromf17g,
but using equations that are consistent with the mass action
law of chemical kinetics, can be found in da Costaet al. f25g.

The paper is organized as follows. The percolation model
is described in Sec. II; this section also introduces tree rep-
resentation of clusters and the Horton-Strahler ranking. In
Sec. III we derive the average mass of clusters of a given
rank using the Tokunaga constraint on cluster branching.
This result will be actively used in consecutive sections. Sec-
tion IV is devoted to the time-dependent rank distribution of
clusters. FirstsSec. IV Ad, we establish the exponential rank
distribution at percolation using the result of Sec. III. We
then proceed with time-dependent rank distribution; Sec.
IV B introduces the three-exponent scaling for ranks and
compares it to the well-known Stauffer two-exponent scaling
for cluster masses. Scaling for ranks averaged over the entire
evolution of the percolation cluster is derived in Sec. IV C;
this result is motivated by the heuristic studies that typically
use averaged observations on a system. Time-dependent
finite-size corrections to the established scalings are de-
scribed in Sec. IV D. Our study of rank distributions is con-
cluded in Sec. IV E by describing the time-dependent behav-
ior of the total mass of clusters of a given rank. Section V
analyzes fractal properties of clusters and reports a sharp
increase of the cluster fractal dimension in the vicinity of
percolation. Section VI uses simulations to establish a no-
table constraint on the dynamics of rank populations. The
results are discussed in Sec. VII.

II. MODEL

A. Dynamics

We consider the classical two-dimensionals2Dd site-
percolation modelf1g. The model dynamics starts with an
emptyL3L square lattice. At each step a particle is dropped
into a randomly chosen unoccupied site; thus each site can
be either occupied by one and only one particle or empty.
Two sites are consideredneighborsif they share one side;
each site on a square lattice has four neighbors. A cluster is
defined as a group of occupied neighbor sitesf1g. Time refers
to the steps at which particles drop onto the lattice. Since we
do not have annihilation of particles, time is formally equiva-
lent to the number of particles on the lattice. It is convenient
to normalize time by the lattice sizeL2 so it varies fromr
=0 at the start tor=1 when all sites are occupied. During the
system evolution, occupied sites start to aggregate and clus-
ters begin to form. Once a sufficient number of particles is
accumulated, a percolation cluster is formed connecting the
opposite sides of the lattice vertically and/or horizontally.

The densityr increases monotonically from zero to its
critical value rc at percolation. For an infinite latticerc
<0.592 746 06f26g, while for a finite lattice it is smallerf1g:

rcsLd = rc − cL−3. s1d

Many phenomena encountered in the percolation model
mimic what we see when phase transitions of the second
kind occur. Note, however, that these phenomena are of
purely geometrical and statistical rather than physical nature.
Indeed, the physical percolation theory is largely predicated
on this geometrical model and there are many empirical links
between them; this is why the percolation model is said to be
an example of thegeometricalphase transition of the second
kind, and why its nomenclature emerges from that of the
physical critical phenomena.

The theoretical description of the percolation dynamics is
conventionally given in terms of the cluster massesf1g; and
most of the universal scalings—a benchmark of phase tran-
sitions of the second kind—deal with parameters expressed
via the mass distribution of clusters. However, if one is in-
terested in an analytical description of the aggregation pro-
cess, the mass description happens to be inferior to the hier-
archical rank approachf17,20g. Properly defined ranks not
only allow one to construct exactly solvable models of ag-
gregation, but also are more feasible for observations in prac-
tice. In addition, they reflect the individual history of cluster
formation. Below we follow the hierarchical approach of
Gabrielovet al. f17g to study the percolation dynamics.

B. Tree representation of clusters

Each cluster in our model is represented by a tree that
reflects the time-dependent formation of a clustersits his-
toryd, and is a subject for quantitative analysis. Specifically,
each one-particle cluster is represented by a trivial tree con-
sisting of a single node. When two clusters are merged to-
gether their trees are also merged by adding a new node
sparentd for which they become childrensand siblings to
each other.d In our model, the coalescence of two or more
clusters can only be materialized by adding to the lattice a
new particle which will be a neighbor to one or more exist-
ing clusters. Figure 1sad illustrates the four possible types of

FIG. 1. Multiple coalescence of clusters.sad Coalescence of
clusters is materialized by adding to the lattice a new particleN
sblackd that is a neighbor to one, two, three, or four existing clusters
snumbered gray sitesd. The relative frequenciesQk, k=1,2,3,4 of
k-coalescences based on simulations withL=2000 are shown in the
figure. The corresponding tree is constructed as shown insbd sfor
k=1d and scd sfor k=2d. The casesk=3,4 areanalogous tok=2.
Note that about 95% of coalescences result in merging two clusters.
See text for details.
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coalescence. We call itk-coalescence in a situation when a
newly dropped particlesmarkedN in the figured is a neighbor
to k existing clusterssgray numbered sitesd. Numerical simu-
lations on a square lattice withL=2000 suggest the follow-
ing relative frequenciesQk of k coalescences:Q1<0.628,
Q2<0.318, Q3<0.052, Q4<0.002. Figures 1sbd and 1scd
illustrate how a tree is formed for different coalescence
types. There are two basic situations. When a new particle is
a neighbor to only one existing cluster, it is considered as an
individual one-particle cluster that is connected to the exist-
ing one. The connecting node of the tree in this case does not
correspond to a particle on the latticefFig. 1sbdg. When a
new particle is dropped as a neighbor to two, three, or four
existing clusters, it is not considered as an individual cluster.
Instead, it corresponds to the connecting node in the tree
fFig. 1scdg. Thus, the connecting node in a tree may or may
not correspond to a lattice particle depending on the coales-
cence type. The branching parametersnumber of children for
a given parentd of a tree for any cluster varies between 2 and
4. Note that both 1- and 2-coalescences result in merging
only two clusters; accordingly, most of the observed coales-
cencessabout 95%d involve only two clusters while coales-
cence of three or four clusters is extremely rare.

The consecutive process of tree formation for a simple
four-particle cluster is illustrated in Fig. 2. Importantly, the
individual evolution of a cluster is crucial in constructing the
corresponding hierarchical tree. To construct the tree one
needs to consider all consecutive coalescences that have
formed the cluster, not only its final shape. Therefore, it is
clear that the same tree may correspond to clusters of differ-
ent shape: Fig. 3sad shows two 11-particle clusters that both
correspond to the same tree shown in Fig. 3sbd. Therefore,
working with trees, we unavoidably narrow the information
about the cluster population. Notice, however, that trees cap-
ture a much larger amount of information than mere cluster
masses. Summing up, the time evolution of a cluster is nec-
essary and sufficient to uniquely determine the correspond-
ing tree, while the inverse is not true. The problem of de-
scribing the set of trees that might correspond to a given

cluster, and the set of clusters that correspond to a given tree,
is beyond the scope of this paper. Next, we describe the
ranking of clusters, presenting a conventional alternative to
the logarithmic binning of cluster masses.

C. Horton-Strahler ranking

The appropriate ordering of treessclustersd is very impor-
tant for meaningful description and analysis of the model
dynamics. The problem of such an ordering is not trivial
since the clusters may grow and coalesce in a variety of
peculiar ways. An advantageous way to solve this problem is
given by the Horton-Strahler topological classification of
ramified patternsf18,21,27g illustrated in Fig. 3sbd. One as-
signs ranks to the nodes of a tree, starting fromr =1 at leaves
sclusters consisting of one particle.d When two or more clus-
ters with ranksr i, i =1, . . . ,n merge together, a new cluster is
formed with the rankf21g

r = Hr1 + 1 if r i = r1 ∀ i = 1, . . . ,n,

maxsr id otherwise.
J

The rank of a cluster is that of the root of the corresponding
tree. It is possible to consider an alternative definition of
ranks: When at least two clusters with rankr coalesce, and
other coalescing clusters have a lower rank, the rank of the
new cluster becomesr +1. Clearly, the two definitions coin-
cide when only two clusters coalesce. The results reported in
this paper are independent of the particular definition, since
coalescence of more than two clusterssespecially of high
ranksd is a rare event.

Originally introduced in geomorphology by Hortonf18g
and later refined by Strahlerf27g, this classification is shown
to be inherent in various geophysical, biological, and com-
putational applicationsf17,19–21,28,29g.

III. MASS-RANK DISTRIBUTION

In this section we derive the distribution of the average
massmr of rank-r clusters. It will be used consequently to
connect various mass and rank scaling laws. First, we define
the branching ratioTij for a given clusterstreed as the num-
berNij of subclusterssnodesd of rank i that joined subcluster
snoded of rank j , averaged over subclusterssnodesd of rank j
f19,30g:

FIG. 2. Tree representation of clusters: scheme. The dynamics is
from left to right. At first step particleA is dropped onto the lattice
and a one-particle cluster is formed; it is represented by a one-node
tree. At second step another one-particle clusterB is formed; it is
represented by another one-node tree. At a third step a new particle
C coalesces with clusterA to form a two-particle clusterAC. This
cluster is represented by a three-node tree; note that the connecting
node of the tree does not correspond to any particle. At a fourth step
a new particleD connects existing clustersAC and B to form a
four-particle clusterABCD. This cluster corresponds to a five-node
tree.

FIG. 3. sad Nonuniqueness of tree representation. Two different
11-particle clusters that correspond to the same tree shown insbd.
Particles have been dropped according to the alphabet; so first was
the particleA, thenB, etc.sbd Horton-Strahler ranking: illustration.
The ranks are shown next to the tree nodes.
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Tij =
Nij

Nj
.

Next we note that the mass of a rank-r cluster is the sum
of two r −1 cluster masses that formed the clusterswe ignore
the possibility for three or more clusters to coalesce at the
same stepd, plus a unit mass of a joining particle, plus the
mass of all the lower-rank clusters that joined the considered
cluster; hence

m1 = 1,

m2 = s2m1 + Pd + T12sm1 + Pd,

m3 = s2m2 + 1d + T23sm2 + 1d + T13sm1 + Pd,

]

mk = s2mk−1 + 1d + o
i=1

k−1

Tk−iksmk−i + 1d − s1 − PdT1k, k ù 3.

s2d

Here the coefficientP addresses the possibility for a one-
particle cluster to join another cluster in two ways: via a
one-particle connectorswith probability Pd or directly swith
probability 1−Pd; the clusters withr .2 can only join other
clusters using a one-particle connector.

It was predicted by Gabrielovet al. f17g and later con-
firmed by simulationsf20g that clusters in the percolation
model obey the Tokunaga scalingf30g asymptotically ink:

Tii+k = Tk = s0s
k−1, s3d

wheres and s0 are parameters. This rewrites Eq.s2d for k
ù3 as

mk = s2mk−1 + 1d + o
i=1

k−1

Tismk−i + 1d − s1 − PdTk−1.

Assuming the mass-rank relation in the formmr =cr−1, c
.1, we obtain

ck−1 = 2ck−1 + 1 +o
i=1

k−1

s0s
i−1sck−i−1 + 1d − s1 − Pds0s

k−1

= ck−2F2 +
1

ck−2 + s0
1 − ss/cdk−1

1 − s/c
+

s0

ck−2

sk−1 − 1

s− 1

− s1 − Pds0ss/cdk−2G .

It is easily checked that this equation has a solution only if
c.s; thuss/c,1 and for largek it then follows that

ck−1 = ck−2F2 +
s0

1 − s/c
G

leading to the final equation

c2 − cs2 + s+ s0d + 2s= 0

with solution

c =
2 + s+ s0 ± Îs2 + s+ s0d2 − 8s

2
. s4d

Remarkably, the model of Gabrielovet al. f17g predicts in
the Euclidean limit of an inverse cascade modelsassuming
clusters of regular, nonfractal, shaped

s0 < 0.554 958 13, s= 1/s0 < 1.801 937 74,

c = 1/s0
2 < 3.246 976 02.

Equations4d in this case givescss0,sd=3.246 979 60sthis is
the only solution such thatc.sd, which is remarkably close
ssix digitsd to the result of f17g. Furthermore, the non-
Euclidian steady-state simulations of Moreinet al. f20g sas-
suming fractal shape of clustersd suggest

s< 3.0253, s0 < 0.6993, c < 4.325,

which exactly solve Eq.s4d. We found it quite amazing that
our complementary set of assumptions used to derive Eq.s4d
led to the same numerical results as the analytical studyf17g
and simulations off20g. This suggests an underlying connec-
tion between our approaches to describe the hierarchical ag-
gregation.

The observed mass-rank distribution of clusters at perco-
lation is shown in Fig. 4; it obeys the exponential relation

mr = 10gsr−1d = cr−1, s5d

with g<0.625, c=10g<4.2. Our simulations suggest that
the mass distribution within a given rank is approximately
log-normalsnot shownd with the mean given by Eq.s5d and
a rank-independent standard deviation.

The relations5d is a key element in our further analysis.
As we will show, the distribution of cluster ranks at percola-
tion sSec. IV Ad and its finite-size correctionssSec. IV Dd are
obtained from the corresponding classical laws for masses by
simply substituting the relations5d. At the same time, one of

FIG. 4. Mass-rank distribution observed on a 200032000 lat-
tice at percolation. Dots, individual clusters; balls, average massmr

within a given rank. Line shows the relationmr =f100.625gr−1

=4.2r−1.
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the most important results, the time-dependent rank distribu-
tion, cannot be obtained this way and requires an additional
treatmentsSec. IV Bd.

The exponential relation of Eq.s5d happens to be valid
over the entire time interval 0,rørc. The corresponding
dynamics ofcsrd is shown in Fig. 5: it grows with time from
about 2.0 at the earliest stages to 4.2 at percolation. This
growth reflects the fact that clusters become more weighty
with time due to coupling with the clusters of lower ranks
swhich does not change the rank but increases the massd. The
growth is not monotonic; it is accompanied by pronounced
log-periodic oscillations which are associated with creation
of new ranks. Log-periodic oscillations that accompany the
general power-law increase of observed parameters have
been found in many systems including hierarchical models
of defect developmentf8g, biased diffusion on random lat-
tices f31g, diffusion-limited aggregationf32g, and others.
Log-periodic oscillations can be naturally explained by dis-
crete scale invariancesDSId f2g, which occurs in a system
whose observables scale only for a discrete set of values. A
famous example of DSI is given by the Cantor set which
possesses a discrete scale symmetry: In order to superimpose
its scaled image onto the original, one has to stretch it by the
discrete factors 3n, n=1,2, . . ., not acontinuous set of values.
The Cantor set and percolation belong to systems with
built-in geometrical hierarchy, leading to DSI. In our particu-
lar system, ranks take only a countable set of values. Cre-
ation of new ranks necessarily disrupts the system in a dis-
continuous way, resulting in the log-periodicity.

Now we return to the numerical value of the parameterc.
In steady-state simulations off20g c=4.325, which is reason-
ably close to what we observe at percolation. Recall that the
models off17,20g use the “fractal correction”e to the cluster
shape; this correction affects the rater ij of cluster coales-
cence:

r ij < e−u j−i uLiLj ,

whereLi is the total boundary size of the clusters of ranki.
The correctione can be expressed as

e =
1
Îc

c − 1

c − 2
,

which, together with results of Fig. 5, shows that in the per-
colation modele decreases in time passing the Euclidean
limit e=1 f17g at src−rd<0.14 and approaching the steady-
state “fractal” e<0.68 f20g at r=rc. The interval 2,c
ø4.2 observed during 0,rørc corresponds to 0.68øe
,`.

IV. RANK DISTRIBUTION

This section is devoted to establishing various time-
dependent scaling laws for clusters of a given rank. We will
see that it is typically impossible to derive such laws by
applying the mass-rank relations5d to the coresponding well-
known laws for cluster masses. This illustrates the original
character and richness of the rank description and prompts
the development of further methods of analysis. We start
with the simplest problem: rank distribution at percolation.

A. Distribution at percolation

We start by recalling the well-known cluster mass distri-
bution at percolationf1g:

nmsrcd , q0m
−t, s6d

wherenmsrcd is the number of clusters of massm per lattice
site, and the Fisher exponentt=187/91<2.05 is universal
for 2D systemsf1,33g. Figure 6 illustrates the mass distribu-
tion at percolation for a system withL=2000; to smooth out
statistical fluctuations it shows the number of clusters with
mass equal to or larger thanm: om8ùmnmsrcd. Equations6d
suggests the slopet−1<1.05, while the observed slope 0.96
is somewhat less than that. This is due to the impact of two
concurrent phenomena: so-called deviation from scaling at

FIG. 5. Parameterc of the mass-rank relationmr =cr−1 as a
function of time. At percolationcsrcd<4.2; the Euclidean limit of
f17g corresponds toc=3.25; it is reached atrc−r<0.14. FIG. 6. sColor onlined Mass distribution of clusters observed on

a 200032000 lattice at percolationr=rc sdash-dotted lined, r
=0.48 sdashed lined, and averaged over 0,r,rc ssolid lined. To
smooth out statistical fluctuations we show the cumulative distribu-
tion proportional toom8.mnm. For comparison, all curves are nor-
malized to unity atm=1.
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small m f34g and finite-size effects at largem f22,34g; they
are discussed below in Sec. IV D.

Now, we use Eq.s6d to derive the distribution of the num-
ber nrsrcd of the clusters of rankr at percolation. Taking
summation over all clusters of rankr and massm we obtain

nrsrcd = o nr,msrcd = q0o
mlo

mup

m−t

,
q0

t − 1
fsmlod−t+1 − smupd−t+1g

=
q0

t − 1
FSmlo

mr
D−t+1

− Smup

mr
D−t+1Gmr

−t+1. s7d

Our simulations suggestsnot shownd that the mass distribu-
tion within a given rank is log-normal with a rank-
independent standard deviation. Thus, for arbitrary upper and
lower quantilesmup, mlo of this distribution the values

mlosupd

mr

are rank independent. Using this, we finally expressnrsrcd
via mr:

nrsrcd = p0mr
−t+1 ~ mr

−1.05. s8d

The power laws8d is observed in the steady-state aggre-
gation model off20g with index 1.147. This index increase
compared to our 1.05 is due to the fact that inf20g interme-
diate clusters are removed from the lattice providing extra
space for a larger number of smaller clusters.

Combining the mass-rank relations5d with s8d we obtain
the following exponential rank distribution at percolation:

nrsrcd , p0mr
−t+1 = p0sc−t+1dr−1 = p1 3 10−br s9d

with

p1 = p0c
t−1, b = st − 1dlog10 c < 0.62.

This is indeed what we observe in Fig. 7 where the rank
distribution nr at percolation is shown by the dash-dotted
line. The studyf20g suggestsc1−t=0.186 while our predic-
tions and observations lead toc1−t<4.2−1.05=0.22. The two
values are in good agreement; the slight difference is ex-
plained, as in Eq.s8d, by removal of intermediate clusters in
f20g. Next we consider the rank distribution forrÞrc.

B. Dynamical rank distribution: Three-exponent scaling

Here we expand the results of the previous section by
establishing the time-dependent rank distribution. First, we
consider the dynamics of rank population.

1. Temporal dynamics of rank population

The dynamics of the total numbersnrL
2d of the clusters of

a given rankr is illustrated in Fig. 8 forr =5,6,7. Thepopu-
lation follows a characteristic bell-shaped trajectory, with
percolation at its rightward limb. As in the case of the mass
description, one does not observe steady-state behavior in the

cluster dynamics: The population of each rank steadily de-
velops to its peak as a result of merging of the clusters of
lower ranks; then it starts decreasing, creating clusters of
higher ranks. As naturally follows from the model definition,
the peak of the population of a higher rank comes after the
peak of a lower rank. Figure 9 shows the population dynam-
ics for the ranks 1ø r ø11 in semilogarithmic scale. Here
one clearly sees the similarity in the dynamics of different
ranks. Note that this figure is remarkably similar to Fig. 7
from f16g which shows the dynamics of clusters with loga-
rithmically binned masses. We now proceed by establishing
the appropriate time-dependent scaling laws.

2. Time-dependent mass distribution

Recall that the temporal dynamics of the cluster mass dis-
tribution is given by the two-exponent scaling lawf1,22,35g

FIG. 7. sColor onlined Rank distribution of clusters observed for
200032000 lattice at percolationr=rc sdash-dotted lined, r=0.29
sdashed lined, and averaged over the percolation cycle 0,r,rc

ssolid lined. For comparison, all curves are normalized to unity at
r =1.

FIG. 8. Dynamics of populationnrL
2 of a given rankr =5,6,7

for L=2000. Moment of percolation is depicted by a vertical dashed
line.

ZALIAPIN, WONG, AND GABRIELOV PHYSICAL REVIEW E 71, 066118s2005d

066118-6



nmsrd , m−tf0szd, z= src − rdms + z0, s10d

with s=1/2. Thefunction f0 has a bell-shaped form with
maximum to the left of percolation; it can be roughly ap-
proximated by a Gaussian functionf22,34g

f0szd ~ exps− az2d. s11d

Note that the shiftz0 is independent ofm.
Considered as a function ofm, the two-exponent scaling

explains the power-law mass distributions6d at percolation
fwith q0= f0sz0dg as well as the downward bend forr,rc,
clearly observed in Fig. 6sdashed lined; while as a function
of r it describes the bell-shaped dynamics of clusters with
given massm.

3. Time-dependent rank distribution

Combining the scaling lawss5d and s10d one formally
obtains the two-exponent scaling for rank dynamics. How-
ever, the two-exponent scaling does not work for ranks; to
show this we assume more generally

nrsrd , g0szd10−br, z= src − rdhsrd + z08, s12d

which is consistent with the exponential rank distribution of
Eq. s9d at percolationfwith p0=g0sz08dg. Possible deviations
from the pure exponential law atr,rc sclearly observed in
Fig. 7d and the dynamics of a given rankssee Figs. 8 and 9d
are described by the specific forms of the functionsg0s·d and
hs·d. Following f34g we define

nrszd ª
nrszd
nrsz08d

=
g0szd
g0sz08d

s13d

and choosehs·d in such a way that the positions of the peaks
of nrszd coincide for differentr; it is always possible by
choosing the appropriate time changehsrd. Figure 10sad
shows the rationrszd /n1szd for r =2,3,6,8. One can seethat
the two-exponent scaling does not work in our case: the
curves do not coincide.

Nevertheless, the simple scaling picture is restored by in-
troducing the additional, third, shift exponent:

hsrd = a1 3 10s1r, z08srd = a2 3 10−s2r . s14d

The function g0 still can be approximated by a Gaussian
function,

g0szd ~ expS−
z2

2
D . s15d

Once the correct scaling form is established, the use of
Eq. s5d is again legitimate, and the exponents1 in Eq. s14d
can be evaluated as

s1 = s log10 ĉ < 0.24,

where ĉ<3 is the median ofc values observed duringr
,rc. The observed exponents1<0.23 snot shownd is fairly
close to its predicted value. The shift exponent is estimated
as s2<0.03, while the scale coefficients area1<1.54, a2
<1.43. The functiong0szd that uses these estimates is shown
in Fig. 11 where different symbols depict clusters of different
ranks. The collapse is obvious, confirming the validity of the
three-exponent scaling Eqs.s12d, s14d, ands15d.

FIG. 9. Dynamics of populationnr of a given rank, 1ø r ø11, in
semilogarithmic scale. Moment of percolation is depicted by a ver-
tical dashed linescf. Fig. 7 from f16gd.

FIG. 10. Scaling for rank dynamics.sad Ratiosnrszd /n1szd do not collapse thus rejecting the two-exponent scaling hypothesis; see details
in Sec. IV B 3.sbd Position of percolation on the normalized Gaussiang0sz−0.51d; see details in Sec. IV B 3.

INVERSE CASCADE IN A PERCOLATION MODEL:… PHYSICAL REVIEW E 71, 066118s2005d

066118-7



In the scaling for cluster masses, the time renormalization
src−rdms collapses the dynamics of massm clusters onto
the master curvef0sz−z0d with its only peak shifted byz0

leftward from percolation; the shiftz0 is mass independent.
Similarly, in the scaling for ranks the time renormalization
src−rd10s1r collapses the dynamics of rankr clusters onto
the master curveg0sz−z08d, although the shift now is rank
dependent and is given by 10s2r. To illustrate this, we show
the position of percolation on the right-hand limb of the
Gaussiang0sz−0.51d in Fig. 10sbd. The higher the rank, the
closer the position of percolation to the peak ofg0.

C. Averaged scaling

In applications, it is often impossible to measure the size
distribution of system elements at a given time instant.
Moreover, sometimes the instantaneous size distribution does
not exist at all: This is indeed the case for the systems de-
scribed by marked point processes widely used to model
seismicity, volcano activity, starquakes, etc.f36g. In such
situations one uses the averaged measurements. For instance,
the famed Gutenberg-Richter lawf37–39g which gives an
exponential approximation to the size distribution of earth-
quakessvia their magnitudesd is valid only after appropriate
averaging over a wide spatiotemporal domain. This explains
the importance of the question: How do the distributions of
Eqs.s10d and s12d change after temporal averaging?

We answer this question for averaging over 0ørørc.
For the mass distribution this leads to

nm̂ª E
0

rc

nmsrddr =E
0

rc

f0szdm−tdr

~ E
0

rc

exph− afsrc − rdms − z0g2jm−tdr

~ m−t−sE
u1

u2

exphu2/2jdu

~ m−t−s s<m−5/2d. s16d

Here the last step neglects the weak dependence of the inte-
gral onm sand uses the valuest<2.0,s=1/2d. The validity
of s16d is confirmed by the observed averaged mass distribu-
tion shown by the solid line in Fig. 6. The averaged mass
distribution is similar to that at percolation: it retains the
power-law form while the slope is increased by 1/2 due to
averaging.

Similarly, we obtain for ranks

nr̂ ª E
0

rc

nrsrddr =E
0

rc

g0szd10−brdr

~ E
0

rc

exph− a8fsrc − rd10s1r − a 3 10−s2rg2j10−brdr

~ 10−ss1+bdrE
u1

u2

exphu2/2jdu

~ 10−ss1+bdr = 10rs1−s−tdlog10 c̃ = 10−rar . s17d

The exponentar may vary from 0.71 to 0.93 depending on
3.0ø c̃ø4.2 sthe range ofc values for the time when at least
three ranks have been formed so the estimation of the distri-
bution slope is meaningfuld. Simulations suggestssolid line
in Fig. 7d ar =0.87, which is in good agreement with our
prediction. Again, the averaged rank distribution retains the
exponential form of the distribution at percolation; while its
index has increased due to averaging.

D. Correction to simple scaling

Due to finiteness of the lattice, the results of previous
sections require some corrections to match exactly the simu-
lated rank distributions. The appropriate corrections are de-
scribed below.

1. Corrected scaling at percolation

The pure power and exponential laws in Figs. 6 and 7 are
just first-order approximations to the observed cluster distri-
butions at percolation. In both cases one sees the downward
bending for small clusters and upward bending for large
clusters. These are not due to statistical fluctuations. The
downward bending for small clusters is explained by devia-
tions from scalingf34g: it can be shown analytically that the
small clusters do not yet obey the general scaling law of Eqs.
s6d and s9d, which holds only for large enough masses
sranksd. The upward bend at large clusters is due to finite-
size effectsf22,34g: each large cluster that reaches outside
the lattice boundary is “seen” as a number of smaller clus-
ters, thus creating the upward deviation from the pure power
sexponentiald law. This phenomenon is especially important
when the system is close to percolation and clusters of arbi-
trarily large sizes have already been formed. The appropriate
scale corrections for the mass distribution were studied by
Hoshenet al. f34g and Margolinaet al. f22g.

To study the above phenomena it is convenient to con-
sider the normalized functions

FIG. 11. sColor onlined Three-exponent scaling for rank dynam-
ics. The master Gaussiansg0szd for different ranks collapse when
using the renormalization given by Eqs.s12d and s14d.
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Nmª mt−1 o
m8ùm

nm8, Nr ª 10brnr ,

which, in the absence of scale corrections, would become
constants:

Nm =
q0

t − 1
, Nr = p1c

t−1.

The functionNr is shown in Fig. 12sad; it clearly deviates
from the horizontal plateau at both sides.

In case of the mass distribution, the corrections to scaling
are given byf22g

nmsrcd . m−tsq0 + q1m
−V + qLm1/DL−1d, s18d

where V<0.75, 1/D=48/91 is the universal mean cluster
radius exponent, andq0,q1,qL are independent ofs and L.
The first additional term describes the deviation from scaling
for small clusters, while the second one is responsible for
finite-size effects.

For rank distribution, the deviations from scaling at lower
clusters are only observed forr =1; while the finite-size ef-
fects at large clusters are clearly present for many ranks.
Accordingly, we propose the following correction to scaling
for the rank distribution:

nrsrcd . 10−brsp0 + pL10drL−1d, r . 1, s19d

with

d =
1

D
log10 c < 0.33.

The observed value ofd can be estimated by plottingsnr

310br−p0d as a function ofr as shown in Fig. 12sbd. The
observed ranks 4ø r ø9 follow the predicted scalings19d
nicely.

Importantly, the corrections to scalings19d act at all clus-
ter sizes, so they cannot be neglected even for the interme-
diate clusters, not only for the largest ones. Indeed, their
effect decreases with increasingL, but this decrease is very
slow. Notably, as shown by Moreinet al. f20g stheir Fig. 5d
even for lattices as large asL=30 000 during the process

when clusters as large as 2% of the lattice size are removed,
the cluster size distribution clearly exhibits upward devia-
tions at large rankssr =11,12,13.d For smaller systems these
deviations become dominant and may lead to an artificial
decrease of the observed slope of cluster size distribution;
this is demonstrated in Figs. 6 and 7 and is also seen in the
analysis of Turcotteet al. f16g stheir Fig. 9d.

2. Dynamics of scaling corrections

Since the finite-size effects play an important role in shap-
ing the observed cluster size distribution, it is worth studying
their dynamics. Specifically, we will be interested in transi-
tion of the cluster size distribution from the convex shapesin
semi- or bilogarithmic scaled at r!rc to formation of the
upward bend at percolation.

For this we introduce a measure of convexity for the rank
distribution, defined as the area between log10 nrsrd and a
chord connecting its first and last points as shown in Fig. 13
sthe pointr =1 is not considered because it is affected by the
deviations from scalingd:

msrd ª E
2

rmax

flog10 nrsrd − sAr + Bdgdr, s20d

with

A =
log10snrmax

/n2d

rmax− 2
, B = log10 n2 − 2A.

The values ofm are positive whennrsrd is convex in a semi-
logarithmic scale, negative when it is concave, and vanish
when it is linear. The measuremsrd averaged over 1000 runs
on the latticeL=2000 is shown in Fig. 13; the bell-shaped
form of m is decorated by the log-periodic oscillations for
src−rd.10−2 explained by creation of new ranks, which
temporarily increases convexity. The zero level is crossed at
about src−rd=2310−3; after that the rank distribution is
concave. A detailed analysissnot shownd demonstrates that
the distribution is never exactly linear; the transition from
convex to concave shape is realized through a wave-shaped
form when the distribution is still convex for the lowerr, but

FIG. 12. Corrections to scaling. The pure exponential rank distribution of Eq.s9d suggests a horizontal plateau for the normalized
functionNr =10brnr, while the observed values clearly deviate from the plateau at small and large clusterssad. The large cluster deviation is
due to finite-size effects and is described by an exponential correction of Eq.s19d with d<0.33 sbd.
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is already concave for the higher ones. Qualitatively the
same picture is observed for the mass distributionnmsrd sin a
bilogarithmic scaled.

The transformation of the cluster size distribution prior to
percolation is not unlike the well-known pattern of an “up-
ward bend” first described by Narkunskaya and Shnirman
f6,40g in an early static model of defect development. Later
it was found in steel samples and the seismicity of California
f41g, and confirmed by the dynamical modeling of failure in
a hierarchical systemsso-called colliding cascade modelsd
f5,10g.

E. Mass dynamics of a given rank

Here we consider the dynamics of the total and average
mass of rank-r clusters:

Mr = o mnrm, mr =
o mnrm

o nr

=
Mr

nr
. s21d

Herenrm denotes the number of clusters of rankr and mass
m. Figure 14 showsnr, Mr, and mr for rank 5; a similar

picture is observed for other ranks. It is tempting to use a
Gaussian approximation forMr and predict Gaussian dynam-
ics of mr sas a ratio of two Gaussiansd and relate their pa-
rameters. Detailed analysis, however, demonstrates that un-
der this approach a peak ofmr for ranks r ù9 should be
observed after percolation; while in simulations this peak is
always prior to percolationsnot shownd. Note that one still
might approximateMr and mr by Gaussians with properly
scaled parameters; such approximations will be good for
rough curve fitting, but will fail to reproduce the deeper
properties of cluster dynamics. This demonstrates the general
limitations of Gaussian approximations in the percolation
problem.

V. CLUSTER FRACTAL STRUCTURE

In this section we evaluate the fractal structure of clusters
considering the mass-circumference relation

m~ CDr , s22d

whereC is the number of empty neighbors of a cluster of
massm. For a percolation cluster on an infinite grid we have
Dr =1, which shows that the percolation cluster is a “linear”
rather than a space-filling objectf1g. Figure 15sad shows the

FIG. 13. Dynamics of scale corrections. A convexity measure
msrd is defined by Eq.s20d and illustrated in the inset. It is positive
for convex and negative for concave rank distribution. The down-
ward bend of the rank distribution observed at early stagessm
.0d is changed to an upward onesm,0d for src−rd,2310−3.
See details in Sec. IV D 2.

FIG. 14. Dynamics of number of clustersnr ssolid lined, total
massMr sdashed lined, and average massmr sdash-dotted lined for
clusters of rankr =5 sMr andmr not drawn to scaled.

FIG. 15. Fractal structure of
clusters. sad Mass-circumference
relation for clusters of different
ranks. The asymptotic power rela-
tion with slope 1.0 gradually de-
velops as rank increases.sbd Val-
ues of fractal dimensionDr fEq.
s22dg for different ranks. Both
panels correspond to a 2000
32000 lattice at percolation.
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cluster masses as a function of their circumference for dif-
ferent ranks. It is easily seen how the linear scalingDr =1
gradually develops as rank increases. Figure 15sbd shows the
index Dr estimated for 1ø r ø9.

Figure 16 shows the dynamics ofD5 prior to percolation;
notably, its steady-state behavior is altered by a gradual in-
crease asr→rc. A similar increase is observed for clusters
of other ranks.

To explain the increase ofDr we recall that the rate of
cluster coalescence is proportional to their circumference
ssee, e.g.,f17gd. Thus, for a given mass, clusters with a lower
Dr have larger circumference, and a higher chance to coa-
lesce. When a sufficient number of rank-r clusters have been
formed, the clusters with lowDr start to coalesce, leaving the
high-Dr clusters on the grid.

Another reason for the increase ofDr is the finite-size
effects. Specifically, this is an effect of having clusters that
on an infinite grid have already gained higher ranks, but on
our finite lattice are still small.

VI. DYNAMICAL CONSTRAINT

Here we report an interesting regularity in rank dynamics
that puts a notable constraint on analytical modeling of the
percolation process. Specifically, we consider the slope be-
tween two consecutive points of the rank distribution:

ursrd ª ln10
nrsrd

nr+1srd
.

The dynamics ofu4 is shown in Fig. 17sad together with that
of n6. Note that the peaks of the two curvessminimum ofu4
and maximum ofn6d coincide. This happens to be true for all
ranks: the positions of corresponding peaks are shown as a
function of rank in Fig. 17sbd. Such perfect matching is very
unlikely to be accidental. Thus we conjecture that in order
for nrsrd to properly describe the time-dependent behavior of
rank population, the following system of differential equa-
tions must have a solution:

Hu̇r = 0

ṅr+2 = 0
J ⇒ Hnrnr+1 − nrṅr+1 = 0,

ṅr+2 = 0.
J s23d

Applying this constraint to the three-exponent scaling of
Eqs.s12d, s14d, ands15d we find

s2 = s1 + log10s1 − 10−2s1d. s24d

According to Eq.s24d, the observed values1=0.23 gives
s2=0.04, which is 33% larger than the observed values2
=0.03. The discrepancy is due to the approximate character
of the Gaussian approximations15d for g0.

VII. DISCUSSION

The goal of this study was to describe the evolution of the
percolation model in terms of consecutive aggregation of
smaller clusters into larger ones using the Horton-Strahler
hierarchical scheme. First, this contributes to the understand-
ing of the percolation phenomenon as a time-dependent hi-
erarchical inverse cascade process. Second, this allows one
to test the validity of the approach introduced by Gabrielov
et al. f17g and further developed by Moreinet al. f20g for a

FIG. 16. Premonitory increase of cluster fractal dimension. The
steady-state dynamics of fractal dimensionD5 fEq. s22dg changes,
andD5 starts to increase, as system approaches percolation. A simi-
lar phenomenon is observed for other ranks.

FIG. 17. Dynamical constraint fornrsrd. Dynamics ofu4= log10sn4/n5d andn6 is shown insad: peaks of two curves coincide. A similar
phenomenon is observed for other ranks:sbd shows the times of maxima ofnr scirclesd and minima ofur−2 strianglesd for 3ø r ø9 fu4

= log10sn4/n5d not drawn to scaleg.
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steady-state approximation to the general aggregation pro-
cess.

We considered dynamical and scaling properties of site
percolation on a 2D square lattice. Followingf17g we de-
scribed clusters by hierarchical trees that reflect the history
of cluster formation; the Horton-Strahler scheme was used to
rank the trees and thus the corresponding clusters. We con-
centrated on the development of the first percolation cluster,
thus working with a system that does not exhibit the steady-
state dynamics, contrary to the studiesf17,20g that have de-
veloped mean-field steady-state approximations to the sys-
tem.

Combining the results obtained in the classical percola-
tion studies with the Tokunaga constraint on the cluster
branching structure we derived various rank-dependent scal-
ing laws connecting the numbernr of clusters of rankr, their
average massmr, and the rankr. We have compared the
parameters of these laws with those predicted and observed
in f17,20g in steady-state aggregation models. The values of
parameters are shown to be in a perfect agreement, confirm-
ing the validity of the approach used inf17,20g. In the ab-
sence of the steady-state behavior, we derived the time-
dependent versions of the scaling laws. We reported the
three-index scalings12d and s14d for the numbernrsrd of
clusters of a given rank, which deviates from the classical
two-exponent scaling for masses.

We studied in detail the transition of the system from
earlier stages to the vicinity of percolation and reported sev-
eral characteristic phenomena observed asr→rc. They in-
clude transformation of the cluster size distribution not un-
like that observed in seismicity, steel samples, and previous
models of hierarchical fracturesf5,6,10,41g; and increase of
the cluster fractal dimension. In our simple model these phe-
nomena are partly explainedsqualitatively as well as quanti-
tativelyd by finite-size effects; nevertheless we believe that
they should not be neglected as irrelevant side effects of
numerical simulation. In fact, in practice we often work with
systems that are described by intermediate depth hierarchies
sin other words they have an intermediate number of degrees
of freedomd. The percolation results related to small and in-
termediate lattices might be of high relevance in describing

such systems. In addition, simulations on large latticessL
=30 000d performed by Moreinet al. f20g show that finite-
size effects are still present even for largeL.

We have formulated the empirical constraint of Eq.s23d
for the time-dependent behavior of rank population size
nrsrd; the constraint follows very clearly from the observed
values ofnrsrd. It would be interesting to check this condi-
tion in real systems traditionally described by the percolation
model.

Our closing remark is on the indext of cluster mass dis-
tribution at percolationfEq. s6dg. The studies of Gabrielovet
al. f17g and Moreinet al. f20g predict t=2, which slightly
deviates from the well-established theoretical value of the
Fisher exponentt=187/91<2.05. The index of the mass
distribution is an essential characteristic of a system, thus
even this slight difference of 2.5% might seem disappointing,
implying the intrinsically approximate character of the mod-
eling of f17,20g. In fact, this implication is not true. To vali-
date the approach off17,20g we notice that the Fisher expo-
nent is tightly connected to the precise count of cluster
particles on a site level, hardly feasible in practice. At the
same time, studiesf42,43g have demonstrated that when we
“characterize the size distribution of clusters in a way that
circumvents the site-level description” considering any
“macroscopic measure of the length scale of the cluster,” the
exponent of the corresponding scaling law becomes 2, uni-
versally for all 2D systems. An example of a “macroscopic
measure” is the linear size in arbitrary direction, the radius of
gyration, the diameter of the covering disk, etc. Clearly, the
modeling off17,20g deals with such a macroscopic measure
of cluster size, and hence predicts the correct scaling expo-
nent.
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