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ABSTRACT

A new empirical approach is proposed for predicting critical transitions in the climate system based on

a time series alone. This approach relies on nonlinear stochastic modeling of the system’s time-dependent

evolution operator by the analysis of observed behavior. Empirical models that take the form of a discrete

random dynamical system are constructed using artificial neural networks; these models include state-

dependent stochastic components. To demonstrate the usefulness of suchmodels in predicting critical climate

transitions, they are applied here to time series generated by a number of delay-differential equation (DDE)

models of sea surface temperature anomalies. These DDE models take into account the main conceptual

elements responsible for the El Niño–Southern Oscillation phenomenon. The DDE models used here have

been modified to include slow trends in the control parameters in such a way that critical transitions occur

beyond the learning interval in the time series. Numerical results suggest that the empirical models proposed

herein are able to forecast sequences of critical transitions that manifest themselves in future abrupt changes

of the climate system’s statistics.

1. Introduction and motivation

Critical transitions are defined as abrupt changes in

the statistical characteristics of a system’s dynamics.

Such changes are a well-known property of complex

systems that include dynamic variables with distinct

temporal scales (see, e.g., Scheffer 2009). Numerous

examples of such systems are known in the physical,

biological, and socioeconomic sciences. In particular,

a system can exhibit critical transitions that modify

a particular statistic on different time scales. For in-

stance, in climate studies, the research can focus on

transitions on multimillennial scales [e.g., the mid-

Pleistocene transition in both amplitude and dominant

periodicity of glacial cycles (Ghil 1994; Huybers 2009)]

as well as on events with interannual time scales, ex-

emplified by the 1976/77 transition in the dynamics of El

Niño–SouthernOscillation (ENSO) and the Pacific decadal

oscillation (Trenberth and Hurrel 1994; Chao et al. 2000).

Clearly, the physical principles that underly events on

different time scales can also be very different. Such dif-

ferences justify using simple conceptual models that de-

scribe only a few mechanisms of interest, as opposed to

using more complex general circulation models, also called

global climate models (GCMs). The latter describe a very

large number of mechanisms, but tend to be ‘‘tuned’’ to

current parameter values, which interferes with simulating

climates that are very different from the one used for the

tuning (Ghil and Robertson 2000; Ghil 2001).
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Forecasting critical transitions in real systems remains

a difficult problem, even if the principalmechanisms of the

dynamics are well captured by a conceptual model. The

hopes for successfully forecasting a critical transition—

namely, both its type and the instant of its onset—in a

complex system can be based on assuming that the system’s

dynamics is described by a given, albeit unknown, evo-

lution operator. The changes in the dynamical properties

of such an operator govern the evolution of the observed

system’s statistics, while critical transitions correspond to

bifurcations in the statistics, as described by the system’s

invariant measure (Eckmann and Ruelle 1985; Ghil et al.

2008a; Chekroun et al. 2011b).

GCMs that are based on first principles and provide

a very detailed description of the observed phenomena

are not well suited for the analysis of such bifurcations,

or for the prediction of such events, mainly because of

their high dimensionality: currently GCMs operate with

an order of 106–107 discrete variables. These short-

comings have motivated researchers to develop coarser

models of reduced complexity. Within the climate

community, D. Kondrashov, S. Kravtsov, and coworkers

have thus developed the empirical model reduction

(EMR) approach, based on the reconstruction of a sys-

tem of coupled nonlinear stochastic differential equa-

tions with colored noise from a model-simulated or

observed time series (Kondrashov et al. 2005; Kravtsov

et al. 2005, 2009). EMR models have been shown to be

very skillful in simulating various statistical properties of

the systems they have been used to study but have not

been specifically applied to the problem of predicting

critical transitions in the presence of slow changes in the

system under investigation.

In a more general context, I.G. Kevrekidis and col-

laborators have developed an equation-free approach to

the computation of bifurcations (Theodoropoulos et al.

2000; Runborg et al. 2002). This approach, however, has

not been applied to the prediction of critical transitions,

a prediction that might be called, following Timmermann

and Jin (2006), a prediction of the third kind, as opposed

to that involved in numerical weather forecasting or in

seasonal prediction. In the first and most common one,

we deal with an initial-value problem and the details of

the solution are important, while in the second one,

boundary data, such as sea surface temperatures (SSTs),

also play an important role; furthermore, in the latter,

one can only hope to predict certain coarse features of

the solution, such as means and variances. In the pre-

dictability of critical transitions, one is interested in

dramatic changes in the overall statistics of the solutions,

and it is parameter values that play a decisive role.

In the present study, we propose an empirical mod-

eling approach aimed at extracting crucial information

about the evolution operator from an observed time

series and applying it to the above prediction problem.

The distinction between this approach and both detailed

GCMs and simpler conceptual models consists in the

absence of any a priori assumptions about the compar-

ative role of various governing mechanisms and, there-

fore, about the structure of the model equations.

Forecasting the system’s behavior, including its critical

transitions, is hence independent of various approxi-

mations connected to more detailed modeling ap-

proaches. The proposed reconstruction of the evolution

operator from a time series only models the interactions

reflected in the examined dataset and, hence, focuses on

the processes that define the essential system dynamics

on the analyzed time interval.

As usual in such empirical approaches, one has to

assume that the interaction laws among the system’s

components that prevailed during the learning period

can be extrapolated into the future. This assumption

seems to hold for a fairly large class of systems, and it

turns out to be the case for the models examined in

this paper and its companion (Mukhin et al. 2015,

hereinafter Part II). The persistence of the dynamical

laws, and hence of the generated statistics, explains

the predictive power of the empirical models pro-

posed herein; for details, see Molkov et al. (2011,

2012). Below, we apply the general approach of

Molkov et al. (2012) to model the atmosphere–ocean

system in the equatorial Pacific Ocean that gives rise

to the ENSO phenomenon, and thus predict its crit-

ical transitions.

Kondrashov et al. (2005) and Kravtsov et al. (2009)

demonstrated the effectiveness of nonlinear, noise-

driven EMR models—based solely on the observed

time series of SST maps from the equatorial Pacific and

elsewhere—for ENSO analysis and prediction. Barnston

et al. (2012) have ascertained that the real-time EMR

forecasts of ENSO indices are highly competitive among

the two dozen dynamical and statistical forecasts in the

ENSOmultimodel prediction plume of the International

Research Institute for Climate and Society (IRI), out to

over 12months.Moreover, Chekroun et al. (2011a) have

shown that the predictive skill of EMR models can be

improved further by taking advantage of the time-

dependent properties of the residual noise to perform

interannual forecasts of the reduced variables.

Molkov et al. (2012) have independently proposed

another way of constructing empirical models suitable

for long-term forecasts of the evolution of the system’s

statistics. In the latter approach, models are constructed

as discrete stochastic maps by direct analysis of the time

series. These maps present a superposition of stochastic

and deterministic components, each of which are functions
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of time and of the current state of the system, reconstructed

by using artificial neural networks (ANNs).

Molkov et al. (2012) have also shown the ability of

their stochastic maps, reconstructed by using scalar time

series, to forecast the evolution of the invariant measure

generated by discrete stochasticmaps, as well as by time-

continuous systems of differential equations. In general,

and without going into technical details, we mean by an

invariant measure a measure defined on the model’s

phase space that is supported by its attractor and is in-

variant under the model’s governing equations. In par-

ticular, the approach of these authors allows one to

predict the main bifurcations of the invariant measures

of the system under study for times that greatly exceed

the duration of the time series being analyzed.

As a first step toward our overall goal, this paper in-

vestigates the applicability of the empirical model ap-

proach overall, and of the ANN-based methodology of

Molkov et al. (2011, 2012) in particular, to forecast

critical transitions in simple conceptual ENSO models.

Part II deals with more detailed models that include

explicit physical-space dependence. The time series

used in this paper, which do exhibit critical transitions,

were generated by idealized, delay-differential equation

(DDE) models with periodic forcing, which represents

the seasonal cycle.

The DDEmodels used here take into account the main

conceptual elements responsible for the ENSO phenom-

enon, as detailed in section 3. Three such models have

been analyzed: the Ghil et al. (2008b) model of thermo-

cline depth with one delay, one feedback, and seasonal

forcing; and the Tziperman et al. (1994) and Galanti

and Tziperman (2000) models for both SST and ther-

mocline depth, which include positive as well as nega-

tive feedbacks.

The above-cited studies have shown that these three

models, depending on their parameter values, exhibit

several dynamic regimes, including periodic behavior

with integer period (in units of a year), as well as

quasi-periodic and chaotic behavior. Variation of

model parameters may cause critical transitions re-

lated to switches between these regimes and related,

in turn, to abrupt catastrophic changes in the model’s

statistics.

We have modified each of these three models for the

purposes of this study by adding time-dependent trends

for the governing parameters, which represent slow

changes in the system’s state, as well as stochastic noise

perturbing the parameter that controls the strength of

atmosphere–ocean interaction. We generate a segment

of the time series that does not contain qualitative dy-

namical changes and use it for learning the model’s

statistics. Having done so, we try next to forecast the

critical transitions that occur beyond the learning

interval.

The paper is organized as follows. Section 2 describes

our general approach to empirical modeling based on

random dynamical systems, and a model of the evolu-

tion operator that will be used for the forecasts is de-

rived. Section 3 reviews conceptual ENSOmodels based

on DDEs with periodic forcing. Section 4 describes the

reconstruction method in the reduced phase space using

the time series. The forecast results for the three models

are presented in section 5. These results are summarized

and discussed in section 6.

2. Empirical modeling using ANNs

To start, we note here that empirical reconstruction of

a complex, high-dimensional system—such as the one

that governs ENSO—is unavoidably based on an evo-

lution operator acting on a low-dimensional space that is

a projection of the original phase space of the full sys-

tem. In general, such a projection is onto but not one-to-

one; that is, two states of the initial system, whether

neighboring or far away from each other in the full phase

space, may project onto the same state in the reduced

phase space. Moreover, this indeterminacy is not ho-

mogeneous within the phase space.

The main idea of using empirical models that include

random processes is to describe this indeterminacy sto-

chastically. In the approach of Molkov et al. (2012), the

stochastic component of the evolution operator depends

on the current state of the system; this operator structure

effectively takes into account the above-mentioned in-

determinacy. Moreover, if the relation between neigh-

boring states is ‘‘almost unique,’’ the evolution operator

is reconstructed quite accurately. In other words, in-

clusion of a state-dependent stochastic term into the

empirical model helps the latter resolve the behavior on

the low-dimensional projection of the full model’s

higher-dimensional attractor. The present study shows

that this approach is indeed effective in forecasting

critical transitions in ENSO dynamics.

a. The stochastic model

Let fU(tn) 5 UngNn51, with U(t) 2 R
d, represent a se-

quence of states of a d-dimensional system obtained

from an observed time series. Typically d�D, whereD

is the dimension of the full system that generated the

time series. We assume that the vector process U(t) is

centered and has unit variance [i.e., E(U) 5 0 and

Var(U) 5 1, where E and Var denote mathematical ex-

pectation and variance, respectively]. The purpose is to

reconstruct the relations between these successive states,

that is, to obtain an evolution operatoru:Rd/R
d acting
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on U(t). In fact, Chekroun et al. (2014) have rigorously

shown that, under suitable conditions, a lower-dimensional

Markov chain representation of a time-continuous high-

dimensional process can capture essential features of the

latter.

As mentioned above, even if the evolution opera-

tor in the full phase-space R
D is one-to-one, the

corresponding map Un / Un11 is, in general, not

unique. Accordingly, we will proceed with con-

structing a stochastic evolution operator, defined in

Arnold (1998) as

Un11 5u(vn,Un) , (1a)

u:V3R
d /R

d and (1b)

vn115 u(vn) , (1c)

u:V/V . (1d)

Here (V, S, P) is a probability space, with sample space

V, algebra of measurable sets (i.e., of ‘‘events’’) S, and
probability measureP, while u is an endomorphism: that

is, a measure-preserving map of this probability space

into itself (Arnold 1998; Ghil et al. 2008a; Chekroun

et al. 2011b). To adapt the very general definition given

by Eq. (1) to practical usage, let us reduce it to a simpler,

coarse-grained form.

First, we can rewrite Eq. (1a), without loss of gen-

erality, as

Un115 f(Un)1h(vn,Un) , (2)

where f(U) 5 Efu(v, U)g is the mathematical expec-

tation of the random function u(v, U), and h(v, U) 5
u(v, U) 2 f(U) is the deviation of u from this ex-

pectation. The representation in Eq. (2) allows one to

explicitly separate the deterministic and random

components of the evolution operator f and h,

respectively.

It is convenient for numerical computations to

represent the stochastic component process [i.e., the

time series of random-function values h(vn, Un)] as

a white Gaussian noise process with state-dependent

amplitude. The stochastic term h can then be

expressed as

h(v,U)5 ĝ(U)z(v), where ĝ:Rd /Ld(R)

and z:V/R
M . (3)

Here, the vector z is assumed to have independent,

normally distributed components fzl } N(0, 1): l 5
1, . . . , dg and to be drawn from a white noise process

with Gaussian probability density w(z) 5 Efd[z 2
z(v)]g. With this assumption, it is natural to restrict

the class of matrices ĝ to the set Ld(R) of non-

degenerate lower-triangular matrices of dimension

d over the field R; evidently, the set Ld(R) suffices to

determine any covariance matrix Ĝ5 ĝTĝ of the ran-

dom term in Eq. (2). Finally, the matrix ĝ is assumed

to depend on U; it describes the distribution of the

random disturbance intensity in the model’s reduced

phase space.

The coarse graining in Eq. (3) implies that the pro-

cesses that affect the time series—but cannot be de-

scribed by the deterministic part of Eq. (2)—are

represented by a random process with short autocorre-

lation time. Taking Eq. (3) into account, Eq. (2) takes

the following form:

Un115 f(Un)1 ĝ(Un)zn . (4)

Molkov et al. (2012) showed, by way of example, that

such a simplification of the empirical model enables

a successful solution of the reconstruction problem, even

in the case of a system being reconstructed that has

obviously non-Gaussian statistics.

b. Bayesian reconstruction

Equation (4) defines a Markov process with the fol-

lowing transition probabilities:

P(Un11 jUn)5

ð
d[Un112 f(Un)2 ĝ(Un)zn]w(zn) dzn ,

(5)

where w(z) is the density of z. The resulting likelihood

function, using the Gaussianity of z, is expressed as

P(U j f, Ĝ)5P
n

P(Un11 jUn)

} P
n

1

jĜ(Un)j1/2
exp

�
2
1

2
[Un112 f(Un)]

TĜ21(Un)[Un112 f(Un)]

�
. (6)

According to Bayes’s theorem, the posterior distri-

bution Ppost of the parameters that appear in f and ĝ is

specified, to within a multiplicative factor that does not

depend on f or ĝ, by the following expression:
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Ppost(f, ĝ jU)}P(U j f, ĝ)Pprior(f, ĝ) , (7)

where the distribution Pprior(f, ĝ) is determined by prior

restrictions on the operator’s parameters. The compu-

tation and the analysis of Ppost(f, ĝ jU) in Eq. (7)

thereby solves the inverse modeling problem, based on

the observed time series U(tn).

c. Inverse modeling: Functional form and parameter
values

The functions f and ĝwill be understood here as being

determined by a prescribed functional form and by the

parameters that appear in this form. We assume now

that the right-hand side (rhs) in Eq. (4) is well defined

over at least some open set of the reduced phase space

R
d: that is, that the functional forms of f and ĝ have been

defined in some way over such a set.

We use ANNs (Hornik et al. 1989) to approximate

both the vector function f and the matrix function ĝ, as

follows:

[A
d
out

m
din
(U, t)]k 5 �

m

i51

(aki 1bkit) tanh

 
�
d
in

j51

wijUj1 gi

!
,

for k5 1, . . . , dout ;

(8a)

f(U, t)5Ad
m

fd

(U, t) and (8b)

vec[ĝ(U, t)]5Ad(d11)/2
m

gd

(U, t) . (8c)

Here vec[ĝ] is the so-called half-vectorization of the

lower-triangular matrix ĝ: that is, the function that

converts this matrix into the vector containing all the

elements of the matrix, excluding the zero entries above

the main diagonal; din is the number of ANN inputs; dout
is the number of outputs; and m is the number of neu-

rons in the hidden layer, while mf and mg are the m

values in the deterministic and stochastic terms of Eq.

(4), respectively.

In line with the considerations put forth by Neal

(1993), we assume Gaussian prior distributions of net-

work parameters of the form

Pprior(a,b,w,g)} exp

(
2�

m

i51

"
�
d
out

k51

 
a2
ki

2s2
a

1
b2
ki

2s2
a

!

1 �
d
in

j51

 
w2
ij

2s2
w

1
g2i
2s2

g

!#)
, (9)

where s2
a 5 1/m, s2

w 5 1, and s2
g 5 d are the variances of

the corresponding parameters. These values reflect the

most general a priori assumptions about the spatio-

temporal properties of the system under study (Molkov

et al. 2011, 2012).

The explicit linear time dependence in Eq. (8a)

mimics the system’s evolution on a time scale that is

slow compared to the characteristic time of change of

its internal dynamics, as observed in the time series

U(t); we associate such an evolution with trends in

the system’s external background. Generally, though,

the evolution of the operator in time is nonlinear,

even when this background varies linearly. Strictly

speaking, the faster such changes, the lesser the val-

idity of the linear assumption, and, hence, the pre-

dictability limit is closer. But we can expect this

assumption to be helpful for some time interval be-

yond the observations.

Molkov et al. (2011, 2012) demonstrated that this

approach to specifying nonautonomous dynamicsmakes

the resulting model well suited for extrapolating its dy-

namics over a time horizon that is comparable with the

observation interval and allows one to make forecasts of

the system’s statistical properties over such an interval.

Under suitable conditions, these forecasts may include

the appearance and approximate timing of critical

transitions.

Next, for estimating model parameters, we define the

cost function as the posterior probability density (PPD)

Ppost(f, ĝ jU): substituting Eqs. (8) and (9) into Eq. (7),

we obtain the resulting density in terms of f and ĝ. In this

study, we use Ppost as a cost function for model learning:

the fitted model parameters provide the global maxi-

mum of the probability density in Eq. (7). Thus, the al-

gorithm used here to forecast critical transitions has the

following four basic steps:

(i) Reconstruction of the phase-space variables U(t)

from an observed time series. The procedure for

scalar time series case is described in section 4a. In

the multivariate case, a more sophisticated method

is proposed in Part II.

(ii) Minimization of the multivariate function

2log[Ppost(f, ĝ jU)] over the parameters of the

functions f and ĝ in Eqs. (8b) and (8c). We use

a quasi-Newtonian, variable-metric method for this

[see Press et al. (2002) for details].

(iii) Generating an ensemble of time series using the

model governed by Eqs. (4), (8), and (9), as given

by the maximum-PPD parameters. This ensemble

approximates the most probable behavior of the

system for a specified time interval.

(iv) Investigating the changes in the probability density

sampled by the above ensemble to determine the

occurrence of critical transitions and their timing.
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3. DDE models of ENSO variability

The DDE models used here take into account the

main conceptual elements responsible for the ENSO

phenomenon: (i) the Bjerknes (1969) hypothesis on the

existence of a positive feedback as a mechanism for the

growth of an internal instability that produces large

positive SST anomalies in the eastern tropical Pacific;

(ii) the presence of delayed oceanic wave adjustments

related to the onset and propagation of Kelvin and

Rossby waves [i.e., a negative feedback that compen-

sates for the previous positive feedback and allows

a return to colder conditions in the basin’s eastern part

(Suarez and Schopf 1988)]; and (iii) the existence of

seasonal forcing. Further details on these mechanisms

are given by Ghil et al. (2008b) and Ghil and Zaliapin

(2013). Three such models have been analyzed: the

Ghil et al. (2008b) model of thermocline depth with

one delay, one feedback, and seasonal forcing; and the

Tziperman et al. (1994) and Galanti and Tziperman

(2000) models for both SST and thermocline depth,

which include positive as well as negative feedbacks.

a. Initial DDE models

Starting in the 1980s, the effects of delayed feedbacks

and external forcing have been studied using the DDE

formalism [see, e.g., Bhattacharya et al. (1982) or Ghil

and Childress (1987) for geoscience applications and

Hale and Lunel (1993) for DDE theory]. Several DDEs

have been suggested as toymodels for ENSOvariability.

Battisti and Hirst (1989) have considered the linear

autonomous DDE:

dT

dt
52aT(t2 t)1T , where a. 0 and t. 0.

(10)

Here, T represents the sea surface temperature aver-

aged over the eastern equatorial Pacific. The first term

on the rhs of Eq. (10) mimics the negative feedback due

to the oceanic waves, while the second term reflects

Bjerknes’s positive feedback. Battisti and Hirst (1989)

have shown that the solutions of this equation reproduce

some of the main features of a fully nonlinear coupled

atmosphere–ocean model of ENSO dynamics in the

tropics (Zebiak and Cane 1987; Battisti 1988).

Suarez and Schopf (1988) and Battisti and Hirst (1989)

also studied a nonlinear version of Eq. (10), in which

a cubic nonlinearity is added to the rhs of the equation:

dT

dt
52aT(t2 t)1T2T3, where 0,a, 1

and t. 0. (11)

This system has three steady states, obtained by finding

the roots of the polynomial on the rhs:

T05 0 and T6 5 6(12a)1/2 .

The so-called inner solution T0 is always unstable, while

the outer solutions T6 may be stable or unstable, de-

pending on the parameters (a, t). If an outer steady state

is unstable, the system exhibits bounded oscillatory dy-

namics. Suarez and Schopf (1988) showed numerically

that a typical period of such oscillatory solutions is about

twice the delay t.

The delay equation idea was very successful in

explaining the periodic nature of ENSO events. Indeed,

the delayed negative feedback does not let a solution

fade away or blow up, as in the ordinary differential

equation case with t 5 0; it thus gives rise to an internal

oscillator whose period depends on the delay and the

particular form of the equation’s rhs. DDEmodeling has

also emphasized the importance of nonlinear in-

teractions in shaping the complex dynamics of the

ENSO cycle. At the same time, many important details

of ENSO variability still had to be explained.

First, a delayed oscillator similar to Eq. (10) or Eq.

(11) typically has periodic solutions with well-defined

periods. However, the occurrence of ENSO events is

irregular and can only be approximated very coarsely by

a periodic function. Second, El Niño events always peak
during the Northern Hemisphere (boreal) winter; hence
their name. Such phase locking cannot be explained by
a purely internal delayed oscillator. Third, the value of
the period produced by the delay equations deviates
significantly from actual ENSO recurrence times of 2–
7 yr. The delay t, which is the sum of the basin transit

times of the westward Rossby and eastward Kelvin

waves, can be roughly estimated to lie in the range of 6–8

months. Accordingly, the model of Eq. (11) suggests

a period of 1.5–2 yr, at most, for the repeating warm

events; this is about half the dominant ENSO recurrence

time.

b. Tziperman et al. model

The next important step in developing ENSO mod-

eling in the DDE framework was made by Tziperman

et al. (1994), who demonstrated that the above dis-

crepancies can be removed by considering nonlinear

interactions between the internal oscillator and the ex-

ternal periodic forcing of the tropical Pacific by the

seasonal cycle. These authors also introduced a more

realistic type of nonlinear coupling between atmosphere

and ocean to reflect the fact that the delayed negative

feedback saturates as the absolute value of the key de-

pendent variable T increases; note that in Eq. (10) the
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feedback is linearly proportional to the delayed state

variable T(t 2 t).

Münnich et al. (1991) studied an iterated-map model

of ENSO and compared in detail cubic and sigmoid

nonlinearities. As a result, Tziperman et al. (1994) chose

the sigmoid type of nonlinearity and thus formulated the

periodically forced, nonlinear DDE:

dT

dt
52a tanh[kT(t2 t1)]1b tanh[kT(t2 t2)]

1 g cos(2pvt) . (12)

Here, the first term on the rhs represents the

westward-traveling Rossby wave, the second term rep-

resents the eastward Kelvin wave, and the last one is

a seasonal forcing. The parameters a, b, and g represent

the relative strengths of these three driving forces; t1 and

t2 are Rossby and Kelvin wave delays, respectively; and

k represents the strength of the atmosphere–ocean

coupling. The period of the seasonal forcing, 1/(2pv)], is

one year, and wewill takev5 1 hereafter, for simplicity.

Depending on the parameter values, the model of Eq.

(12) was shown to have solutions that possess an integer

period, are quasiperiodic, or exhibit chaotic behavior.

The increase of solution complexity—from period one to

an integer but higher period, and on to quasiperiodicity

and chaos—is caused by the increase of the atmosphere–

ocean coupling parameter k. Tziperman et al. (1994) also

demonstrated that this forced DDE system exhibits pe-

riod locking, when the external, ‘‘explicit’’ oscillator wins

the competition with the internal, delayed one, causing

the system to stick to an integer period; dependence of

the system’s period on model parameters takes the form

of a devil’s staircase.

This result is in agreement with a growing body of

work (Ghil and Robertson 2000; Chang et al. 1994, 1995;

Jin et al. 1994, 1996; Tziperman et al. 1994, 1995) that

points to resonances between the Pacific basin’s intrinsic

air–sea oscillator and the annual cycle as a possible

cause for the tendency of warm events to peak in boreal

winter, as well as for ENSO’s intriguing mix of temporal

regularities and irregularities. For example, Jin et al.

(1994, 1996) provide a more detailed analysis of phase

locking in an intermediate coupled ENSO model.

These and other ENSO studies with DDE models

have been limited to (i) the linear stability analysis of

steady-state solutions, which are not typical in forced

systems; (ii) case studies of particular trajectories; or

(iii) one-dimensional scenarios of transition to chaos,

where one varies a single parameter, while the others are

kept fixed. Amajor obstacle for the complete bifurcation

and sensitivity analysis of such DDE models lies in

the complex nature of DDEs, whose numerical and

analytical treatment is harder than that of models with

no delays.

c. Ghil et al. model

Ghil et al. (2008b) and Zaliapin and Ghil (2010) took

several steps toward a comprehensive analysis, numer-

ical as well as theoretical, of DDE models relevant for

ENSO phenomenology. These authors considered

a simplified version of Eq. (12):

dT

dt
52tanh[kT(t2 t)]1 b cos(2pt) , (13)

and, for the first time, performed its analysis in the

complete 3D space of the physically relevant parame-

ters: strength of seasonal forcing b, ocean–atmosphere

coupling k, and transit time t of oceanic waves across the

tropical Pacific.

This model reproduces many aspects of ENSO phe-

nomenology. These aspects include prototypes of El

Niño and La Niña events; intraseasonal activity remi-
niscent of Madden–Julian oscillations (Madden and

Julian 1994) or westerly wind bursts; and spontaneous

interdecadal oscillations. The model also provided

a good justification for the observed quasi-biennial os-

cillation in tropical Pacific SSTs and trade winds

(Philander 1990; Diaz and Markgraf 1992; Jiang et al.

1995; Ghil et al. 2002): in this model, ENSO’s 2–3-yr

period arises naturally as the correct multiple (4 times)

of the sum of the basin transit times of Kelvin and

Rossby waves.

Zaliapin and Ghil (2010) found regions of stable and

unstable solution behavior in the model’s parameter

space; these regions have a complex and possibly fractal

distribution of solution properties. The local continuous

dependence theorem evoked by Zaliapin and Ghil

(2010) suggests that the complex discontinuity patterns

indicate the presence of a rich family of unstable solu-

tions that point, in turn, to a complicated attractor.

A simple DDE model like Eq. (13), with a single

delay, does reproduce the devil’s staircase scenario

documented in other ENSO models, including in-

termediate coupled models and GCMs, as well as in

observations (Jin et al. 1994; Tziperman et al. 1994;

Ghil andRobertson 2000). The latter result suggests that

interdecadal variability in the extratropical, thermoha-

line circulation (Dijkstra and Ghil 2005) might interfere

constructively with ENSO’s intrinsic variability on this

time scale. Zaliapin and Ghil (2010) found that the

model of Eq. (13) is characterized by phase locking of

the solutions’ local extrema to the seasonal cycle; in

particular, solution maxima (i.e., model El Niños) tend
to occur in boreal winter.
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These authors also foundmultiple solutions coexisting

for physically relevant values of the model parameters.

Figure 1 illustrates the model’s sensitive dependence on

parameters in a region that corresponds roughly to actual

ENSO dynamics. The figure shows the behavior of the

period P of model solutions as a function of two param-

eters: the propagation period t of oceanic waves across

the tropical Pacific, and the amplitude b of the seasonal

forcing; for aperiodic solutions, one sets P5 0. Although

themodel is sensitive to eachof its threeparameters (b,k, t),

sharp variations in P are mainly associated with changing

the delay t, which is plotted on the ordinate.

This sensitivity is an important qualitative conclusion,

since in reality the propagation times of Rossby and

Kelvin waves are affected by numerous phenomena that

are not related directly to ENSO dynamics. The sensi-

tive dependence of the period on the model’s parame-

ters is consistent with the irregularity of occurrence of

strong El Niños and can help explain the difficulty in
predicting them (Latif et al. 1994; Ghil and Jiang 1998).

The model’s instabilities disappear, and the dynamics

of the system becomes purely periodic, with a period of

one year (not shown), as soon as the atmosphere–ocean

coupling k vanishes or the delay t decreases below

a critical value. Figure 2 illustrates this effect in greater

detail: the periodP ofmodel solutions increases with t in

discrete jumps (P5 2k1 1, k5 0, 1, 2, . . .) separated by

narrow, apparently chaotic ‘‘windows’’ in t. This in-

crease in P is associated with the increase of the number

of distinct local extrema, all of which tend to occur at the

same position within the seasonal cycle. The alternation

between regular and chaotic windows resembles, in fact,

the behavior of chaotic dynamical systems in discrete

time (Kadanoff 1983) and suggests that the model’s

aperiodic dynamics is, in fact, chaotic.

This chaotic behavior implies, in particular, that small

perturbations in the model parameters or in initial states

may lead to significant changes of the model dynamics.

Because of this sensitive dependence, forecasting the

model’s behavior, as well as that of the related natural

phenomenon, is a hard problem. The boundary between

the domains of stable and unstable model behavior is

clearly visible at the lower right of Fig. 1.

The period-1 region below and to the right of this

boundary contains simple solutions that change

smoothly with the values of model parameters. The re-

gion above and to the left is characterized by sensitive

dependence on parameters. The range of parameters

that corresponds to present-day ENSO dynamics lies on

the border between the model’s stable and unstable re-

gions. Hence, if the dynamical phenomena found in the

model have any relation to reality, tropical Pacific SSTs

and other fields that are highly correlated with them,

inside and outside the tropics, can be expected to behave

in an intrinsically unstable manner; they could, in par-

ticular, change quite drastically with global warming.

d. Galanti and Tziperman model

Galanti and Tziperman (2000) emphasized that un-

derstanding of the physical mechanisms of ENSO’s

phase locking requires exploration of idealized models

FIG. 1. Period map for the delayed coupled oscillator of Eq. (13).

The figure shows the period P as a function of two model param-

eters: amplitude b of seasonal forcing and delay t of the oceanic

waves; the ocean–atmosphere coupling strength is fixed at k 5 10.

Aperiodic solutions correspond to P 5 0. Numbers indicate the

period values within the largest constant-period regions. FromGhil

et al. (2008b).

FIG. 2. Local maxima (red) and minima (blue) of solutions of

Eq. (13) as a function of delay t; the other parameter values are

fixed at k 5 10 and b 5 2. Notice the aperiodic regimes between

periodic windows of gradually increasing period. This figure cor-

responds to the rightmost vertical section of the region shown in

Fig. 1; from Zaliapin and Ghil (2010).
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that are more rigorously derived than the Tziperman

et al. (1994) model, reproduced in Eq. (12) here, yet still

simple enough to allow detailed exploration. Accord-

ingly, the paper under discussion investigated the in-

teraction between ENSO oscillations and the seasonal

cycle using several carefully derived models. We review

here briefly the model for the so-called mixed-mode

regime, which is based on the recharge oscillator of Jin

(1997a,b).

Unlike the original model of Tziperman et al. (1994),

Galanti and Tziperman (2000) explicitly consider the

Kelvin waves and formulate the model as a delayed-

oscillator equation for SST in the eastern tropical Pacific.

Hence, both oceanic wave time scales and thermodynamic

time scales play a role in this model. Finally, the model

expresses the thermocline depth anomaly h(t) at the

eastern edge of the basin via the earlier values of h(s) and

of the equatorial SST T(s) for s , t:

h(t)5 e2�(t
1
1t

2
)rWrEh(t2 t1 2 t2)2 e2�t

2rW
1

br
Adt1m(t2 t22 t1/2)

3 e2�t
1
/ 2bT(t2 t22 t1/2)1 e2�t

2
/ 2 1

rC0

dt2bm(t2 t2/2)T(t2 t2/2) and (14a)

›tT52�T 2
2w

3H
[T2Tsub(h)] . (14b)

In Eq. (14a), the first term represents the free Rossby

and Kelvin waves, the second represents the excited

Rossby wave, and the third represents the excited Kelvin

wave. The ocean dynamics is modeled here using the

following parameters: � is the oceanic damping coef-

ficient; H is the mean thermocline depth and C0 5
(g0H)

1/2, where g0 is the reduced-gravity acceleration; t1 is
the time it takes a Rossby wave to cross a basin of length

L; t25L/C0 is the time it takes a Kelvin wave to cross the

same basin; d 5 1/2 is the fraction of crossing time during

which the wind stress affects the oceanic waves; and rW
and rE are reflection coefficients at the western and

eastern boundaries, respectively.

The thermodynamic parameterization in Eq. (14b)

uses the thermal damping coefficient �T, the mean up-

welling w, and the temperature anomaly Tsub(h) at

depth H. Finally, the ocean–atmosphere interaction in-

volves two parameters: the coupling coefficient m be-

tween equatorial SST and wind stress, and the mean

annual coupling strength b. The seasonal forcing enters

into this model via the parameter m, which varies ac-

cording to

m5 11 � cos(wat2f) .

Numerical values of all these parameters appear in

Galanti and Tziperman (2000, their Table 1). The model

of Eq. (14) is nonlinear because of the sigmoid shape of

the function Tsub(h).

The main focus of the Galanti and Tziperman (2000)

analysis was understanding the mechanism of the well-

known phase locking of ENSO events to boreal winter.

Most notably, all model variants they considered ex-

hibited strong phase locking, with warm events peaking

during boreal winter. Still, an event peak could shift by

about 2 months as a result of the adjustment time of

temperature T to changes in thermocline depth h.

Finally, Galanti and Tziperman (2000) considered

linear versions of the three models analyzed in their

study and concluded that ENSO’s phase locking is not

a result of model nonlinearity. Instead, it is as a result of

the seasonal modulation of the model parameters, and it

can be observed in linearized models as well. This con-

clusion is entirely consistent with the classical analysis of

parametric forcing in the linear Mathieu equation, ob-

tained by linearizing the Hill equation of lunar-motion

theory (Abraham and Marsden 1987).

4. Empirical model reconstruction

a. Periodic forcing and embedding

To study predictability of the critical transitions in

ENSO dynamics using the approach of section 2, we use

time series generated by the model of Eqs. (12), (13),

and (14) that were described in section 3. One of each

model’s parameters is changed adiabatically (i.e., on

a time scale that is slow compared to the model’s in-

ternal variability). Such a slow, prescribed evolution

allows us to produce time series that include critical

transitions.

Specifically, we use a linear time dependence of

a governing parameter r(t) say:

r(t)5 r(0)1 [r(N)2 r(0)]
t

N
, (15)

where N is the duration of the time series being studied.

An important step in empirical modeling of the evo-

lution operator is choosing a learning sample. This step

includes reconstructing the phase variablesX 2R
d using
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a time series x(t), where d denotes the dimension of the

reduced phase space under consideration. In this study,

the phase variables were obtained using the Mañe–
Takens embedding theorem (Mañe 1981; Takens 1981);
that is, the values of the time series x(t) were shifted d2 1

times by a lag q: Xi(t) 5 x[t 1 q(i 2 1)], i 5 1, . . . , d.

The choice of the lag q will, in general, affect the at-

tractor’s projection onto R
d; hence, q should be opti-

mized, along with d and the number of neurons entering

the model. In the present study, these parameters were

chosen for each time series to achieve the best corre-

spondence between the resulting models and the

analyzed time series. The details of this optimization

procedure will be discussed in a separate work.

The presence of the annual seasonal cycle has to be

taken into account when constructing an empirical

ENSO model. This means that the phase space of the

analyzed system can be represented as a cylinder, and it

is convenient to construct the evolution operator using

the Poincaré projection: that is, to model the relations
between states separated by 1-yr intervals. Hence, we
will construct a discrete evolution operator u: X(t) /
X(t 1 Dt), where Dt 5 1 yr. The learning, or training,

sample is given by fXn: X(nDt: n 5 1, . . . , Ntr)g where

FIG. 3. Reconstruction of the Ghil et al. (2008b) model’s behavior; the model version studied

here is governed by Eq. (13) with the parametric forcing of Eqs. (15) and (16). (top) The

observed (black) and future (red) behavior of the original model; the abscissa is time t running

from 0 to 8000. The empirical model’s training interval isNtr 5 2000, which corresponds to the

delay in the dynamical model changing over the range 0.4195 # tlearn # 0.4165, and the noise

level inEq. (16) iss5 0.03. The empirical model dynamics is shown in blue; its dimension is d5 2,

while the number of parameters in the deterministic and stochastic part, respectively, ismf 5 10

and mg 5 10. The time-varying PDFs of the (middle) original dynamical model and of

(bottom) the empirical reconstructedmodel are shown; the density scale is shown by the color

bars on the right-hand side. See text for details on the invariant measures and their corre-

sponding densities.
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X 2 R
d and Ntr is the length of the training interval, in

years.

b. Randomized parameters

The main problem using the time series generated by

the deterministic, dynamic models governed by Eqs.

(12)–(14) in order to learn an empirical, stochastic

model of type Eq. (4) is the lack of sufficient information

in these series. Specifically, for physically meaningful

values of the pertinent parameters, these models exhibit

three types of behavior: (i) periodic oscillations, the

period of which is commensurable with the period of the

external forcing; (ii) quasi-periodic oscillations that

correspond to a dense coverage of a torus in the system’s

phase space; and (iii) deterministically chaotic variabil-

ity (Jin et al. 1994, 1996; Tziperman et al. 1994; Ghil et al.

2008b; Galanti and Tziperman 2000; Zaliapin and Ghil

2010). Hence, all critical transitions related to the

change of a control parameter represent switches be-

tween two of these three states.

Reconstruction of a dynamical-model trajectory from

a time series within some fixed regime corresponds to

finite sampling of its states from the attractor associated

with that particular, asymptotic regime. To predict

transition to a different attractor, associated with an-

other regime, the empirical model has to reconstruct the

evolution of the Lyapunov exponents responsible for

the attractor’s stability. It is clear, however, that in the

absence of transition processes in the learning sample,

one cannot draw any conclusions about the attractor’s

stability without additional information about the

system.

At the same time, the purely deterministic ENSO

modeling discussed so far is clearly an idealization, since

the observed time series cannot be fully described by

purely deterministic equations. In other words, in reality

one always observes transient dynamics rather than an

asymptotic, stationary regime.

This state of affairs motivates us to modify the models

of Eqs. (12) and (13) by addingGaussian red noise to the

FIG. 4. As in Fig. 3, but with noise level s 5 0.27.
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parameter k that describes the strength of atmosphere–

ocean coupling:

k5 k(11sy) and (16a)

dy52aydt1 (2a)1/2dW . (16b)

Here, a is a damping parameter for the red noise process

y, chosen so that its autocorrelation time is much shorter

than the characteristic time of the deterministic model

dynamics, thusmaking the red noise above almost white,

while W is a Wiener process and s2 multiplies the vari-

ance of y. These modified models were used to generate

weakly nonstationary time series for different noise

levels s in Eq. (16a).

A different situation is observed for the Galanti and

Tziperman (2000) model, governed by Eq. (14), which

exhibits chaotic behavior in the parameter range we

study here. Such behavior is very informative for re-

constructing a system’s dynamical properties. In this

model, the change of the delay t1 gives rise to the

creation and destruction of chaotic attractors. We re-

stricted, therefore, this model’s analysis to learning

within a chaotic regime and did not modify the original

Eq. (14) by stochastic perturbations.

5. Predictability results

a. Ghil et al. model

The time series produced by the model of Eq. (13), with

fixed parameters k 5 100, b 51, and a 5 25 and with ad-

ditional forcing according to Eqs. (15) and (16), are shown

in the top panels of Figs. 3–6 . All time series are plotted as

yearly dots, according to the Poincaré projection in-
troduced in section 4a; using lines would make the figures

illegible. The first three figures correspond to a slow de-

crease of the delay from t 5 0.4195 to 0.4075, while time,

0# t# 8000, is in units of 1yr. The learning interval is 0#

t#Ntr, withNtr5 2000 (shownby theblack line in the three

top panels of Fig. 7) and the noise has three levels—s 5
0.03, 0.27, and 0.4—in Figs. 3–5, respectively.

FIG. 5. As in Fig. 3, but with noise level s 5 0.4.
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In Fig. 3 (top panel), the original, dynamical model

(red dots outside the learning interval)—with noise level

s 5 0.03 in the time-dependent forcing [cf. Eq. (16a)]—

generates clear critical transitions at t ’ 800, 2900, and

7000. The transitions represent changes in the dynamical

model’s behavior; the last one corresponds to an abrupt

decrease in the mean-square fluctuation of the model

dynamics. The second and third transitions happen

outside of the learning interval, and the last one is lo-

cated far away from the end of this interval. Note,

however, that the second transition, near t ’ 2900, re-

sembles quite well the one that occurs within the learning

interval, near t ’ 800, and even the third one includes

model behavior that seems to lie within the phase-space

domain explored during the learning interval.

At the noise level s 5 0.27 (Fig. 4), only the last

critical transition is noticeable. Finally, for s 5 0.4

(Fig. 5), the transitions practically disappear.

We used the initial segments, 0 # t # 2000, of the

dynamical-model solutions in the top panels of Figs. 3–5

to construct an empirical, ANN-based model of Eq. (7)

with evolution operator given by Eqs. (4) and (8). The

empirical state vector U here has dimension d 5 2 and

the number of neurons is mf 5 10 and mg 5 10 in the

deterministic and stochastic terms, respectively. The

time series generated by the empirical model of Eq. (4),

with parameters that maximize the PPD in Eq. (7), are

shown in blue in the top panels. Clearly there is good

agreement between the red dots (i.e., the dynamical

model’s behavior targeted for prediction) and the em-

pirical prediction given by the blue dots.

In addition to the time series themselves, we compare

the invariant measures of the dynamical and the em-

pirical model at different epochs of t. Rigorously

speaking, these invariant measures are supported, when

the system’s forcing or parameters are time-dependent,

FIG. 6. Reconstruction of the Ghil et al. (2008b) model’s behavior in a more difficult-to-

predict situation; see text for details. The training interval now is Ntr 5 1750, with noise level

s 5 0.27 and change of the delay over the range 0.4055 # tlearn # 0.4081. Panels and color

conventions as in Figs. 3–5.
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by a so-called pullback attractor (Arnold 1998; Ghil

et al. 2008a; Chekroun et al. 2011b; Ghil 2015). It is

laborious to approximate accurately such a time-dependent

attractor, and the invariant measure it supports, when

the dynamical system is infinitely dimensional, as in the

case at hand.

Instead of following the general procedure outlined in

the above references for such a time-dependent attrac-

tor, we note that time t enters explicitly into the control

parameter r(t) in the dynamical model [cf. Eq. (15)], as

well as into the parameterization of the ANN model in

Eq. (8), and that the time dependence of the parameter

r is slow. Hence, we generated very long time series—

containing approximately 105 points each, after skipping

the transient of about 104 points—of the dynamical

model at a fixed value of r(t) and of the empirical model

at the corresponding value of t in Eq. (8), as a reasonably

accurate way of approximating the probability density

functions (PDFs) associated with the hypothetical pull-

back attractor. Indeed, such a PDF, in turn, approxi-

mates the density of the invariant measure on the

models attractor at epoch t. Then we compared the

PDFs so obtained for both dynamical and empirical

models as functions of t.

This comparison is illustrated in the middle and bot-

tom panels of Figs. 3–5. The resolution used in these

figures suffices to reflect the very thin support of the

invariant measure. Increasing the resolution, along with

the number of points in the time series, leaves the PDFs

visually unchanged. There is also fairly good agreement

between the invariant measures associated with the

dynamical and the empirical model in Fig. 3 up to t ’
3000 and again for the final collapse of the variance past

t’ 7000. The agreement becomes gradually less good in

Figs. 4 and 5, but the variance collapse past t ’ 7000 is

still quite clear in the former.

This collapse is induced by a bifurcation in the un-

perturbed model of Eq. (13), which manifests itself by

destroying an invariant torus in themodel’s phase space,

while replacing it by a stable limit cycle with a 1-yr pe-

riod; the latter corresponds to one stable fixed point in

the discrete Poincaré map. The suddenness of this
transition apparently helps the empirical model predict
it, as compared with other transitions considered below.
We conclude, therewith, that the proposed Bayesian

ANN model of Eq. (8) gives an adequate description of

the original model governed by Eqs. (13), (15), and (16),

especially at moderate noise levels s. The empirical

model allows one to forecast the behavior of the dy-

namical one, including its future critical transitions, at

least to a certain degree.

In addition, we compared the Fourier spectra of the

dynamical and the empirical model within the learning

interval and beyond. Given the length of the time series,

their Fourier spectra could be computed accurately

enough simply by using the windowed Blackman–Tukey

correlogram (see Ghil et al. 2002). The spectra so ob-

tained and plotted in Fig. 7 show mostly the presence

or absence of two major modes of ENSO variability

(Jiang et al. 1995): a quasi-quadriennial (QQ) oscillation

FIG. 7. Fourier spectra for the Ghil et al. (2008b) model, governed here by Eqs. (13), (15), and (16). The noise levels are s5 (left) 0.03,

(center) 0.27, and (right) 0.4 in Eq. (16) (i.e., corresponding to Figs. 3–5). (top) The Fourier spectra of the original dynamical (black) and

empirical (blue) model for the learning interval 0# t# 2000; (bottom) the spectra of the future behavior of the former (red) and the latter

(blue) model for 6000 # t # 8000.
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around 0.25 cycles yr21 and a quasi-biennial (QB) one

around 0.4 cycles yr21.

Both theQQ and theQBmodes are very energetic for

s 5 0.03 and 0.27 during the learning interval, while for

s5 0.4 the QQmode is still quite significant but the QB

one has largely disappeared. This disappearance implies

that larger stochasticity levels lie outside the range of

model validity for ENSO simulation and prediction.

During the forecasting interval, both the QQ and QB

modes are by-and-large absent, for all s values. Figure 7

thus indicates good agreement between the dynamical

and the empirical model in the spectral domain.

Figure 6 corresponds to a slow increase of the delay

from t 5 0.4055 to 0.4175, with the solutions displayed

over the same total interval of 8000 yr but an even

shorter training interval of Ntr 5 1750 yr; the noise level

s 5 0.27 in the coupling parameter k is the same as in

Fig. 4 above. This situation differs from the one studied

in Figs. 3–5, in which—as the delay changes from t 5
0.4195 to 0.4075—the dynamical model evolves during

the training interval in the same region of phase space in

which it will be located after the upcoming bifurcation,

a state of affairs that allows us to adequately forecast the

critical transition.

In the present situation, however, there are phase-

space regions that the dynamicmodel visits at later times

but not during the learning interval. To forecast a tran-

sition associated with totally unobserved behavior in

a purely deterministic model with no noise is impossible.

The presence of relatively strong noise, however, allows

us to forecast, albeit with limited accuracy, such a tran-

sition in a stochastically perturbed model.

This is what we see in Fig. 6: the critical transition is

located outside the learning interval, and it is predicted

FIG. 8. Reconstruction of the Tziperman et al. (1994) model’s behavior, governed here by

Eqs. (12), (15), and (16). Panels and color conventions as in Figs. 3–6. The learning interval now

has a length ofNtr 5 1000, and the model’s forcing parameters are 0.976# blearn # 0.964, with

noise level s5 0.05. The empirical model has dimension d5 2, and the parameter numbers are

mf 5 7 for the deterministic part and mg 5 2 for the stochastic part, respectively.
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not as a sharp jump but as a smooth transition in the

inverse model’s behavior.

b. Tziperman et al. model

Figures 8–10 show the time series generated by the

model governed here by Eqs. (12), (15), and (16), with

parameters a5 1.1, g 5 1, t1 5 0.6, t2 5 0.2, and k5 7,

while the control parameterb in Eq. (12) decreases from

b(0) 5 1 to b(N) 5 0.904, and the noise levels are s 5
0.05, 0.15, and 0.3, respectively. The empirical model of

the evolution operator has dimension d 5 2, while the

neuron numbers are mf 5 7 and mg 5 2. These lower

values of the neuron numbers, in the deterministic and

even more so in the stochastic term of Eq. (4), are suf-

ficient to capture this dynamical model’s simpler be-

havior, as we shall see forthwith.

The training interval here is 2000# t# 3000, and thus

Ntr 5 1000. Figures 8 and 9 demonstrate that, for the

noise levels s 5 0.05 and 0.15, the empirical model’s

predictability range extends into the past, with b

increasing, all the way to t’ 0 and into the future, with b

decreasing, out to t ’ 6000. Over the interval 0 # t #

6000, the empirical model nicely approximates the be-

havior of the system and successfully forecasts all critical

transitions, when s 5 0.05 or 0.15. When the noise level

increases further, to s 5 0.3 (Fig. 10), the time interval

over which the empirical model simulates and predicts

adequately the behavior of the dynamical model extends

at least as far as the entire interval under consideration

(i.e., 0 # t # 8000).

Fourier spectra of the dynamical-model behavior are

presented in Fig. 11, in black for the learning interval

and in red for the future. Note that here the QQ mode

dominates for all three noise levels shown (top panels of

the figure), while the QB peak almost disappears in fu-

ture behavior (bottom panels). Note that QB peak be-

comes very small at the noise level of s 5 0.3, so the

model with higher noise tends to no longer capture

ENSO-like oscillations. Confirmation of the empirical

model’s skill is given by the close agreement of its

FIG. 9. As in Fig. 8, but with noise level s 5 0.15.
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Fourier spectra (blue lines) with those of the original

model.

c. Galanti and Tziperman model

As discussed in section 4b, we study this model in

a parameter range in which it behaves chaotically, and

we refrain from randomizing its parameters. The time

series shown in the top panel of Fig. 12 was obtained as

the delay t1 was changed linearly from 2.9 to 0.5 months

over 9000 yr. The bottom panel shows the results of the

reconstruction by an ANN model of dimension d 5 2

and number of neurons mf 5 12 and mg 5 2.

The empirical model succeeds quite well in fore-

casting the nature of the Galanti and Tziperman (2000)

model’s critical transitions into both past and future,

although the exact timing is somewhat off. Further

confirmation of the model’s skill is given by the close

agreement between the dynamical and empirical

models’ Fourier spectra in Fig. 13. As in the Tziperman

et al. (1994) model (see again Fig. 11), the QB peak is

barely present here, but the evolution of the QQ peak

with time in the Galanti and Tziperman (2000) model is

well captured by our empirical model.

6. Concluding remarks

In this paper, we developed an approach to empirical

modeling and prediction of complex dynamical systems

using observed, finite intervals of the time series gen-

erated by such a system for which the evolution operator

is not known. Following this approach, inverse, sto-

chastic models were constructed to describe the key

properties of the system under study and use them for

the prediction of its future dynamics. The emphasis in

this work is on predicting future regime changes, called

here critical transitions, rather than details of a system’s

entire future evolution.

We applied the proposed approach to the analysis of

the critical transitions characteristic of ENSO dynamics

in order to understand and optimize their predictability

FIG. 10. As in Fig. 8, but with noise level s 5 0.3.
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from the observed time series. At this stage, three dif-

ferent, idealized models of ENSO dynamics were used

to illustrate the capabilities of our approach, which will

be applied to spatially distributed data in Part II. It is

important to note, though, that the relatively simple

models used here are of the DDE type, and, hence, are

infinitely dimensional. Furthermore, they capture key

elements of ENSO dynamics: namely, the seasonal

forcing, nonlinear atmosphere–ocean feedbacks, and

delayed adjustments due to the equatorial ocean waves.

After presenting our general approach to empirical

modeling of a system’s evolution operator, we provided

FIG. 11. As in Fig. 7, but for the Tziperman et al. (1994) model. The noise levels are s 5 (left) 0.05, (center) 0.15, and (right) 0.3

(i.e., corresponding to Figs. 8–10). (top) The Fourier spectra over the training interval 2000 # t # 3000; (bottom) the spectra for

4000 # t # 5000.

FIG. 12. Reconstruction of the Galanti and Tziperman (2000) model’s behavior, governed

here by Eqs. (14) and (15). The learning interval now is 2500# t# 4000 so thatNtr 5 1500; the

parameter t1 is linearly changed from 2.9 at t5 0 to 0.5 at t5 9000; and the noise level is s5 0,

while the empiricalmodel has dimension d5 2, and the parameter numbers in the deterministic

and stochastic parts aremf5 12 andmg5 2, respectively. (top)Dynamical model, with learning

interval in black and the behavior outside it in red; and (bottom) empirical model in blue.
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an algorithm for constructing a low-dimensional ap-

proximation of this operator via artificial neural net-

works (ANNs). It was pointed out that the use of

random processes in the algorithm is of the essence in

order to explore a broader region of the empirical

model’s reduced phase space than the one covered by

the system’s trajectories during the learning interval.

The three DDE models of ENSO dynamics to which

our algorithm was applied are the Tziperman et al.

(1994), Galanti and Tziperman (2000), and Ghil et al.

(2008b) models. Our main result is that the empirical

models constructed herein are able to forecast se-

quences of critical transitions—manifesting themselves

as abrupt changes of the system’s probability density in

phase space—well into the future (i.e., at times that can

exceed an integer multiple of the length of the learning

interval). The forecasts were overall quite accurate as to

the nature of the critical transitions and sometimes but

not always so with respect to the exact timing of the

transitions.

Note that the nonlinearity of the empirical models—

given by their ANN-based structure—is essential for

capturing the critical transitions of all three DDE

models we studied: these transitions correspond to cer-

tain model bifurcations and hence are strongly nonlinear

in nature. Certainly, such forecasts would be impossible

with any linear approach. In particular, our empirical

models were able to predict critical transitions associated

with the destruction of a simple attractor that exists in

a narrow region of phase space and with the system’s

shift to a more complex dynamic regime; see, for in-

stance, the transitions that occur in the Ghil et al.

(2008b) model (Fig. 3) at t ’ 3200, in the Tziperman

et al. (1994) model (Fig. 8) at t ’ 4000, and in the

Galanti and Tziperman (2000) model (Fig. 12) at t ’
700 and 6000.

As previously stated, this study is restricted to the

analysis of scalar time series generated by the concep-

tual models of Eqs. (12)–(14) that, while infinitely di-

mensional, include only one or two dynamical variables.

Of course, the real atmosphere–ocean system re-

sponsible for the climate dynamics in the equatorial

Pacific is much more complex than these models.

However, the motivating hypothesis of empirical mod-

eling in general is that there exist low-dimensional

models that manage to approximate the current and

future evolution of a high-dimensional system (Penland

1996; Kondrashov et al. 2005; Kravtsov et al. 2005, 2009).

Chekroun et al. (2014) have recently shown that, under

suitable mathematical conditions, this hypothesis can be

shown to hold rigorously. Here, we extend this hypoth-

esis to the very interesting case of successfully predicting

critical transitions and demonstrate its validity, at first,

on simple conceptual models.

The success of the present approach depends on the

extent to which the learning interval contains sufficient

FIG. 13. Fourier spectra for the Galanti and Tziperman (2000) model. (top) Fourier spectra

for the original (black) and empirical (blue)model during the learning interval 2500# t# 4000;

(bottom) the spectra of the future behavior of the original (red) and empirical (blue) model for

6000 # t # 7000.
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information on the system’s behavior in the future as

well. For the Galanti and Tziperman (2000) model

(Figs. 12 and 13), this was the case even without the

need of adding stochastic terms to the parametrically

driven model; for the other two—the Ghil et al.

(2008b) model (Figs. 3–7) and the Tziperman et al.

(1994) model (Figs. 8–11)—it was necessary to extend

the phase-space region explored during learning by

such stochastic perturbations.

The main additional difficulty of working with the real

climate system lies in the need to analyze much richer

datasets that include multiple time series of distinct cli-

mate variables on a given spatial grid. Clearly, in that case

the problem of constructing low-dimensional empirical

models is more complicated than the one treated in this

paper. Several studies have already shown that successful

simulation and prediction of large climatic datasets using

low-order inverse models is possible (Penland 1996;

Penland and Matrosova 2001; Kondrashov et al. 2005;

Kravtsov et al. 2009; Chekroun et al. 2011a). Part II of this

paper will consider a time series generated by a spatially

distributed dynamic model that describes ENSO dy-

namics and will suggest a way to construct a low-order

empirical model that is able to effectively forecast critical

transitions using the observed time series measured at

distributed spatial locations.
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