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Abstract

This paper introduces a multiscale analysis based on optimal piecewise linear approximations
of time series. An optimality criterion is formulated, and on its base, a computationally effective
algorithm is constructed for decomposition of a time series into a hierarchy of trends (local linear
approximations) at different scales. The top of the hierarchy is the global linear approximation
over the whole observational interval, the bottom is the original time series. Each internal level
of the hierarchy corresponds to a piecewise linear approximation of analyzed series. Possible
applications of the introduced Multiscale Trend Analysis (MTA) go far beyond the linear inter-
polation problem: This paper develops and illustrates methods of self-affine, hierarchical, and
correlation analyses of time series.
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1. INTRODUCTION

The motivation for the Multiscale Trend Analysis
(MTA) introduced in this paper is to describe and
analyze time series in terms of their observed trends
(local linear approximations). Indeed, trends are the
most intuitive feature of a time series and it seems
natural to use them for series quantitative descrip-
tion. Such a description is intrinsically multiscale
since each non-trivial process exhibits juxtaposi-
tion of trends of different duration and steepness
depending on the observational scale.

The proposed analysis is based on piecewise
linear approximations of the analyzed time series.
Construction of such approximations involves a
tradeoff between quality and detail. We formulate
(see Sec. 2.3) a local optimality criterion and use
it in a multiscale fashion to detect local trends in
a time series at all possible scales, thus forming
a hierarchy of trends. This hierarchy serves as a
unique representation of the original time series and
is used for quantitative analysis.

The problem of piecewise interpolation of time
series has been given significant attention in the
context of image processing (see, for example,
Refs. 1–3). However, the focus was on construct-
ing an optimal piecewise linear approximation Lε(t)
with minimal number of segments for given error ε
(deviation from the original signal). On the con-
trary, we concentrate on finding a whole hierarchy
of consecutively more detailed approximations.

This paper illustrates the following applications
of MTA:

• Descriptive and exploratory data analysis: Com-
putationally effective trend decomposition nat-
urally complements a standard data miner’s
toolbox. Conveniently, MTA does not rely on
any assumptions about the analyzed time series
(e.g. stationarity or existence of higher moments)
while its results are easily interpreted.

• Self-affine analysis: Particularly, MTA provides
a way to extract local fractal properties of the
processes.

• Hierarchical analysis: Representation of a time
series as a hierarchy (tree) allows one to use
methods borrowed from the theory of hierarchi-
cal scaling complexities.4 Particularly, Horton-
Strahler indexing provides a natural way to
consider scaling laws for trends.

• Correlation analysis: MTA allows one to detect
nonlinear correlations, particularly those caused

by the presence of amplitude modulation and
nonlinear long-term trends.

The paper is organized as follows: Sec. 2
introduces the basic notions and describes the
computational algorithm for decomposition of a
series into a hierarchy of trends. Methods of
MTA-based self-affine analysis comprise Sec. 3.
Section 4 introduces hierarchical analysis of time
series. Correlation analysis is described in Sec. 5.
Fractional Brownian walks (FBWs) and Man-
delbrot cascade measures are used to illustrate
methods of Secs. 3–5. Section 6 concludes.

2. MULTISCALE TREND

DECOMPOSITION

The core of the MTA is construction of a hierar-
chical tree TX that describes the trend structure
of a given time series X(t). Trend is defined here
as a linear least square approximation of X(t) at a
subinterval of the observational time interval. The
tree TX is formed step-by-step, from the largest to
the smallest scales: First, we determine the longer
trends, then look for the shorter and shorter trends
against the background of already established ones,
all the way down the hierarchy of scales. The larger
the scale at which the trend is observed, the higher
the level of the corresponding vertex within the tree.
The root (top vertex) of the resulting tree TX cor-
responds to the global linear trend of X(t); each
internal vertex corresponds to a distinct local trend,
the leaves (vertices with no descendants) to the
elementary linear segments of the original time se-
ries X(t): [X(ti), X(ti+1)]. The union of leaves thus
coincides with X(t).

A recursive procedure for constructing the tree
TX is described below.

2.1. Scheme of the Decomposition

Without loss of generality we presume that the time
series X(t) is observed at a finite number of epochs
within the time interval [0, 1]. At the first step the
whole time series X(t), t ∈ [0, 1] is approximated
by a single trend — the linear least square fit L0(t)
(Fig. 1a).

This trend forms the vertex v0 at the level 0 (the
root) of the resulting hierarchical tree TX (Fig. 1c).
It is also convenient to say that the root of TX

corresponds to the whole time interval [0, 1], and
vice versa. At the next step we determine secondary
trends on the background of the first global one. For
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Fig. 1 Scheme of the Multiscale Trend Decomposition. (a) At zero step X(t) is approximated by its global linear trend
L0(t). (b) Detrended series X1(t) = X(t) − L0(t) is approximated by the piecewise linear function L1(t), the whole analysis
is then repeated at each of subintervals [t1i , t1i+1]. (c) Resulting hierarchy of trends (see Sec. 2 for details).

this we consider the deviation X1(t) = X(t)−L0(t),
t ∈ [0, 1] of X(t) from its linear trend L0(t) and ap-
proximate it by a piecewise linear function L1(t)
(Fig. 1b). The most delicate part of the analysis —
choosing the optimal number n0 of segments for this
approximation — is described below in Sec. 2.2. The
approximation L1(t) results in partition of the time
interval [0, 1] = I0 into n0 non-overlapping subin-
tervals I1

i = [t1i , t1i+1], i = 1, . . . , n0, with t11 = 0,

t1n0+1 = 1. The linear segments l1i (t) that comprise
L1(t) are determined by the least square fit of X(t)
within corresponding subintervals. They form n0

vertices v1
i , i = 1, . . . , n0 at level 1 of the tree TX .

The enclosures I1
i ⊂ I0 are reflected in the struc-

ture of the tree TX by the fact that the vertices
corresponding to subintervals I1

i are descendants of
the root, which corresponds to I0. Note that the
approximation L1(t) constructed this way is discon-
tinuous since we do not require the ends of adjacent
segments l1i (t) to coincide. Considering continuous
approximation L1(t) does not change the general
idea and applicability of the proposed technique.
As can be seen from Figs. 3 and 4 below, in generic
cases both the approaches lead to similar results.
The continuous version of the algorithm is used in
the example of Fig. 17.

Repeating the above procedure at arbitrary inter-
val I1

i from level 1 we form n1
i ternary linear trends,

each determined by the least square fit of X(t) at
a subinterval I2

j ⊂ I1
i , j = 1, . . . , n1

i . The union of

N2 =
∑n0

i=1 n1
i such trends descending from all the

trends of level 1 form level 2 of the tree TX . To in-
dex the vertices (local trends) at level 2, we use the
natural ordering induced by the corresponding time
partition: v2

i (l2i ) denotes the vertex (trend) that
corresponds to the time subinterval I2

i = [t2i , t2i+1],
i = 1, . . . , N2.

Repeating the same procedure at each time
interval of level l, l ≥ 0, we form level (l + 1). It
consists of

Nl =

Nl−1
∑

i=1

nl−1
i

subintervals (vertices). By construction, N0 = 1 and
Nk < Np for k < p. The depth of the resulting tree
is denoted by L.

Each level l of the tree TX corresponds to a
piecewise linear approximation Ll(t) of the time se-
ries X(t) as well as to the induced partition I l =
{I l

i , i = 1, . . . , Nl} of the observational interval I0.
The global piecewise linear approximation Ll(t) at
level l is a union of local linear approximations lli(t),

t ∈ I l
i = [tli, tli+1], i = 1, . . . , Nl, and I0 = ∪Nl

i=1I
l
i ∀ l.

By rl
i we denote the length of subinterval I l

i , and
by el

i the rms deviation of X(t) from its linear fit
lli(t) at this subinterval:

el
i =

√

∑

t∈Il
i

(X(t) − lli(t))
2 . (1)
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The total fitting error El at the level l is given
by

E2
l =

Nl
∑

i=1

(el
i)

2 =
∑

t∈I0

(X(t) − Ll(t))
2 . (2)

All vertices (subintervals) at a given level of TX

result from the same number of divisions of the ini-
tial interval [0, 1]. However, in many applications
it is desirable to work with approximations charac-
terized by a similar scale of observed trends, inde-
pendently of the division history. To take this into
account we consider the modified tree MX obtained
from TX by the following procedure. The first two
levels of MX are the same as that of TX . Each con-
secutive level is formed by division of only one of
the existing subtrends and leaving all the others
unchanged. A subtrend vl

i to be divided corresponds
to the maximal improvement of the fitting quality
∆ = (el

i)
2−

∑

(el+1
c )2, where c runs over the indexes

of children of the vertex i. We will call TX the topo-
logical and MX the metric tree associated with the
series X(t). To avoid excessive notations we will use
the same indexing for both the trees TX and MX

stating each time which one is considered.

2.2. Optimal Piecewise Linear

Approximation

Here we describe a procedure for finding the op-
timal piecewise linear approximation L(t) of a se-
ries X(t) at a given time interval. Without loss of
generality we suppose that the interval is [0, 1].
The problem, of course, is in finding the optimal
tradeoff between the number N of linear segments
within L(t) and the corresponding fitting quality E.
Clearly, the larger the number N , the better the re-
sulting fit. Our goal is to depict by linear segments
only the most prominent large-scale trends of X(t)
leaving the smaller fluctuations for the later steps of
the decomposition. To solve this problem we employ
the function

C(N,E) = −
log(E/E0)

N − 1
, (3)

where E0 is the fitting error of the global lin-
ear approximation L0(t) of X(t) on [0, 1]. This
function measures the quality of a piecewise lin-
ear approximation L(t;N, E) which consists of N
linear segments and has total fitting error E. The
optimal approximation L(t;N ∗, E∗) corresponds to
the maximum of C(N,E):

C(N∗, E∗) = max
N,E

C(N, E) . (4)

Geometrically, consider the plane (N, log(E/E0)),
N being the number of linear segments within a
piecewise linear approximation of X(t) on [0, 1],
and E the total fitting error. The global linear
approximation L0(t) at the whole interval [0, 1]
corresponds to the point p0 = (1, 0). An arbitrary
piecewise approximation Li(t) corresponds to the
point pi = (Ni, log(Ei/E0)), Ni ≥ 1, Ei ≤ E0.
The slope of the linear segment [p0, pi] shows the
increase of the fitting quality per one additional
segment of approximation. By the criterion (3) and
(4), we chose the approximation with the maximal
quality increase.

With the above criterion (3) and (4), one can
find the optimal approximation by a full search
over all possible partitions of [0, 1] by epochs of
X(t) into N = 2, 3, . . . , subintervals. However, the
computational complexity of such an approach de-
pends exponentially on the number of observations
so it can hardly be used in practice. In Sec. 2.3
below, we introduce an optimized search based
on the idea that partition epochs should corre-
spond to the prominent edges of the analyzed series
X(t).

2.3. Optimized Search

The idea of the optimized search is to reasonably re-
duce the set of possible partition epochs by consid-
ering only those at which X(t) significantly changes
its slope — edge points.

The edge points are determined by the following
recursive procedure illustrated in Fig. 2.

At the first step we choose the epochs (t1, t2) cor-
responding to the maximum and minimum of the
detrended function X1(t) = X(t) − L0(t), where
L0(t) is a least-square linear fit of X(t) in [0, 1].
If one of these epochs coincides with the interval
boundary (say, t1 = 0) only the remaining epoch
(t2) is considered. If both these epochs coincide
with the interval boundaries, we redefine L0(t) as
the line connecting X(0) and X(1) and repeat the
procedure. As a result we have one or two parti-
tion epochs within the initial interval; they divide
it into two or three subintervals respectively. The
procedure is now repeated for each of these subin-
tervals, producing two to six new partition epochs.
Together with already selected ones, they divide the
initial interval into, respectively, four to nine subin-
tervals, etc. The partition stops when the predefined
number (Nh−1) of partition epochs is collected; this
corresponds to Nh subintervals.
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Fig. 2 Scheme of detection of edge points. (a) At zero step X(t) is approximated by its global linear trend L0(t). (b) Epochs
(t1, t2) of global maximum and minimum of the detrended series X1(t) = X(t) − L0(t) are located. (c) Analysis is repeated
at each of subintervals [0, t1], [t1, t2], and [t2, 1].
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Fig. 3 Decomposition of a fractional Brownian walk with Hurst exponent H = 0.7. (a) Piecewise linear approximations at
levels l = 0, 1, 2, 10. (b) Corresponding hierarchical tree.

With (Nh−1) possible partition epochs there are
(2Nh−1−1) ways to divide the interval into 2, . . . , Nh

subintervals. The optimal — according to (3) and
(4) — partition can be found by

(

2Nh−1 − 2
)

operations.
To further reduce the computation volume, we

first choose the optimal one from (Nh − 1) parti-
tions formed by (Nh − 2) partition epochs. Next,
only the (Nh − 2) epochs that form this partition
are used to find the optimal partition with (Nh−3)
partition epochs, etc. Finally, we use criterion (3)
and (4) to choose the optimal from (Nh − 1) parti-
tions, each having a distinct number of subintervals
ranging from 2 to Nh. This way we reduce the num-
ber of operations to (N 2

h − Nh − 2)/2.
Clearly, the above optimization may produce a

piecewise function which does not coincide with the
optimal one resulting from applying the criterion
(3) and (4) to the whole variety of possible parti-
tions. As such, this optimization should be consid-
ered as a computationally effective approximation
of the result. Extensive numerical experiments show
that it is reasonably good for a wide range of time
series including fractional Brownian motions with

different Hurst exponents and self-affine processes
coming from geophysical observations.

2.4. Examples

Here we show some examples and illustrate different
ways to visualize the results of the decomposition.

Figure 3 shows four levels, l = 0, 1, 2, and 10
of tree MX for a fractional Brownian walk (FBW)
with Hurst exponent H = 0.7. Panel (a) shows the
analyzed series X(t) and the piecewise linear ap-
proximations Ll(t), l = 0, 1, 2, 10, while panel (b)
shows the four corresponding levels of the tree MX .

One can see how the fitting quality improves with
the number of linear segments: Each consecutive ap-
proximation tries to account for the most prominent
variations of X(t) adding the least possible num-
ber of new segments. For example, starting with
the three segments of the decomposition L1(t) at
level 1, it is clearly more efficient to improve the
leftmost segment, which exhibits large deviations
around t = 0.1, than work with the central or right-
most one. When work is done with the largest devi-
ation (see level 2), we proceed to the smaller ones.
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(c)                     (d)

0.4 0.7 0.45 0.53
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Fig. 4 Decomposition of the sum of three sinusoids, X(t) = sin(5πt)+ 1
5

sin(60πt)+ 1
10

sin(200πt). (a) X(t) on the background
of three levels from its decomposition. (b) Piecewise linear approximation corresponding to the top level of the decomposition
shown in panel (a). (c) Fragment corresponding to the middle level of (a). (d) Fragment corresponding to the bottom level
of (a).

The function shown in Fig. 4a on the background
of its tree MX is a sum of three sinusoids with dif-
ferent frequencies.

The amplitudes are chosen in such a way that
the largest fluctuations are carried at the smallest
frequency, intermediate at the second largest, and
smallest at the highest one. This structure is clearly
depicted by the decomposition with each separate
level responsible for a distinct frequency [see panels
(b)–(d)].

Two more examples are given in Fig. 5 where
we show only the signals X(t) and the upper
levels of their trees MX , which is enough to

understand the shape of corresponding piecewise
linear approximations. Decomposition for the fa-
mous Devil’s Staircase is shown in Fig. 5a: It gives
the exact description of the staircase structure.
Figure 5b shows a decomposition for modulated
oscillations with time-dependent frequency. Con-
trary to the panel (a) here we use color codes to
depict slope changes (from downward to upward
or vice versa), not their directions. In this exam-
ple one can see how the amplitude of oscillation
is reflected in the decomposition: The higher the
amplitude, the higher the level at which it is first
detected.
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(a)

(b)

Fig. 5 Decomposition of (a) Devil’s Staircase (5 upper levels of MX are shown) and (b) modulated sinusoid with time-
dependent frequency (15 levels are shown).

2.5. On the Numerical Parameter Nh

The only numerical parameter of our algorithm is
the maximal number Nh of secondary trends (see
Sec. 2.3). Large values of Nh contribute to the
computational complexity, while small values may
prevent fast detection of optimal approximation
and create superfluous levels of the hierarchy TX .
Numerous experiments suggest the value Nh = 5 as
the optimal tradeoff, and we use it for all experi-
ments presented in this paper.

Clearly, with Nh = 5, we are not insured from
creating unnecessary levels. For example, the
division of Fig. 4b consists of 6 (> Nh = 5)
linear segments, so it could not be obtained by a
single division of the original series. In fact this is

level 2 of the original hierarchy MX . Analogously,
the intermediate division of Fig. 4a (see also
Fig. 4c) corresponds to level 19, and the bottom
one (Fig. 4d) to level 82.

The simple procedure used to remove unneces-
sary levels is illustrated in Fig. 6 where we show
the fitting error El/E0 for all levels l of the tree MX

constructed for the signal of Fig. 4a. The prominent
edge points show the three levels at which satura-
tion of the fitting quality is reached; only these three
levels are left in Fig. 4a.

If the analyzed tree has only less-than-5-fold par-
titions (which is the case for the Devil’s Staircase of
Fig. 5a), the above procedure is unnecessary. The
properties of this procedure and conditions for its
use are beyond the scope of the present paper.
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Fig. 6 Illustration of removing unnecessary levels from the
decomposition (for the signal shown in Fig. 4). Prominent sat-
uration points correspond to the three levels shown in Fig. 4.

3. SELF-AFFINE ANALYSIS

In this section, we demonstrate how self-affine
properties of a time series are reflected in its

decomposition MX .
Recall4,5 that statistical properties of a self-affine

time series X(t) remain the same under the trans-
formation

{

t′ = rt

X ′ = rHX .
(5)

That is, when one changes the observational time
scale by a factor of r, the scale of measurements
should be changed by a factor of rH in order to
preserve the characteristic statistical features of
X(t). The parameter H is called Hurst exponent; it
is related to the fractal dimension D of a self-affine
time series as H = 2 − D.5 Accordingly, for one-
dimensional time series the Hurst exponent may
take values within the range 0 < H < 1. A use-
ful interpretation of H comes from the character
of correlations between the time series increments:
∆i = X(ti) − X(ti−1). Negative correlations be-
tween ∆i and ∆i+1 lead to high fluctuations of X(t)
and as a result to absence of pronounced trends;
this situation corresponds to small values of Hurst
exponent: H < 1/2. Positive correlations — lead-
ing to existence of long-term trends — correspond
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Fig. 7 Relation between Hurst exponent and error scaling for fractional Brownian walks. (a) Trajectories of FBWs with
H = 0.1, 0.5, 0.9 and corresponding error scalings. (b) Relation b(H) for FBWs, 0 ≤ H ≤ 1, values of b averaged over 100
realizations of FBWs for each value of H. (c) The same as (b) for integrated FBWs.
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scaling (8) is clearly observed.

to H > 1/2. For a process with independent incre-
ments (e.g. Brownian walk) one has H = 1/2.

To estimate the Hurst exponent of observed time
series one typically considers the dependence of a
convenient measure of its variation on the length
of a corresponding observational interval.4,5 In our
case the appropriate variation measure can be cho-
sen as the fitting error El (2) of MX at level l.
According to (5), for a self-affine series X(t) we

expect to observe a power-law relation

El

E0
= N−H

l = RH
l (6)

where Nl is the number of segments at the level l,
Rl = N−1

l is their mean length.
As a model example we consider FBWs with

Hurst exponent in the range 0 < H < 1.
Figure 7a shows trajectories and the correspond-

ing (Nl, El)-scalings for three FBWs with H =
0.1, 0.5 and 0.9. Figure 7b shows the value b(H)
estimated by the best linear square fit from the
relation

log(El/E0) = −b log(Nl) (7)

based on decomposition of 2100 independent
FBWs; to remove statistical fluctuations we aver-
aged b over 100 FBWs for each value of H. As seen
in Fig. 7b, the scaling (6) clearly holds for H > 0.3;
the deviations observed at the smaller values of H
are due to the fact that the corresponding FBWs be-
come noisier and hardly display pronounced trends.
This effect is typical for self-affine analysis (e.g. see
Ref. 6). To neglect it we consider the integrated
signal Y (t) =

∑

s≤t X(s). Estimations of the slope
b(H) for integrated FBWs are presented in Fig. 7c.
The linear relation b(H) = H + 1 is now observed
for 0 < H < 0.6, the change of slope compared to
Fig. 7b is due to the integration procedure.
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Fig. 9 Estimation of local Hurst exponent, H(t) for a multifractal (Mandelbrot cascade measure) [panel (a)] and monofractal
(Brownian walk) [panel (b)]. Corresponding time series are shown in panels (c) (multifractal) and (d) (monofractal).
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Fig. 10 Error-length dependence for multi- and mono-
fractals of Fig. 9. Note that the point scattering is signifi-
cantly larger for the multifractal.

Another way to estimate H is to consider the
error-length dependence for all individual linear
segments comprising MX :

el
i

E0
= (rl

i)
H+1/2, l = 1, . . . , L, i = 1, . . . , Nl . (8)

The difference in the power exponents of relations
(6) and (8) is explained by the fact that the for-
mer deals with averaged statistics, while the lat-
ter deals with characteristics of individual intervals.
Figure 8 illustrates the error-length dependence (8)
for FBWs with H = 0.1 and H = 0.9.

Importantly, MTA provides a convenient basis for
estimation of local Hurst exponent H(t). Consider
all the intervals from TX that cover epoch t. At each
level l of TX there is one and only one such interval;
we use the index l

(t) to denote this interval and all

its characteristics. The local Hurst exponent H(t)
is estimated now from the relation

el
(t)

E0
= (rl

(t))
H(t)+1/2, l = 1, . . . , L . (9)

Figures 9a and b show the dynamics of the
local Hurst exponent for multi- and mono-
fractals. We use a Mandelbrot cascade measure
M(0.7, 0.3; 0.3, 0.7) as a model example of a mul-
tifractal (Fig. 9c), and a Brownian walk as that
of a monofractal (Fig. 9d). The definition of Man-
delbrot cascade measure is given in Appendix A.
Recall that monofractals are characterized by a sin-
gle Hurst exponent (H(t) = const.), while multi-
fractals by several or by a whole range of possible

1 1 1 1 1 1

12 2 2

23

3

Fig. 11 Horton-Strahler indexing.

Hurst exponents. Note that the range of H(t) varia-
tion for the monofractal (Fig. 9b) is an order of mag-
nitude less than that for the multifractal (Fig. 9a).

The points (el
(t), rl

(t)) used in (9) to estimate the

local Hurst exponent are extracted from the whole
set (el

i, rl
i) of (8). This suggests a method for detect-

ing multifractality in X(t): The larger the scatter-
ing of the points (el

i, rl
i), the larger the probability

that the observed series is a multifractal. Formal
statistical tests can be easily constructed from this
general principle based on the particular problem at
hand. The character of temporal variations of H(t)
(Figs. 9a and b) can be also used in such tests. An
example of the scattering (el

i, rl
i) is shown in Fig. 10

for mono- and multi-fractals of Fig. 9. In this model
example the difference is obvious.

4. HIERARCHICAL SCALING

The appropriate ordering of vertices within a tree
TX is very important for meaningful description and
analysis of the series X(t). The problem of such an
ordering becomes not trivial as soon as the tree is
not uniform (i.e. is not formed by applying the same
deterministic division rule to each of its vertices). A
befitting way to solve this problem is given by the
Horton-Strahler topological classification of rami-
fied patterns7–9 illustrated in Fig. 11: One assigns
orders to the vertices of the tree, starting from k = 1
at leaves (vertices with no descendants).

The order of an internal vertex equals the maxi-
mal order m of its descendants, if they are distinct,
and m+1 if they are all equal. Originally introduced
in geomorphology by Horton8 and later refined by
Strahler,9 this classification is shown to be inherent
in various geophysical, biological and computational
applications.7,10–12

As a result of the Horton-Strahler indexing of
the tree TX , each of its vertices is characterized by
an order k, length r of the corresponding partition
interval, and the error e of the linear least square
fit of X(t) on this interval. The scaling behavior
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Fig. 12 Three levels of detail in MTA description of a time series. (a) Topological. (b) r-metric, based on the interval
partition. (c) e-metric, based on local linear fit of the series (see details in Sec. 4).

of X(t) can be described by the exponents of the
relations:

N(k) ∼ 10−BN k; R(k) ∼ 10BRk

E(k) ∼ 10BEk .
(10)

Here N(k) is the number of vertices of order k, R(k)
and E(k) are the values of r and e averaged over the
vertices of order k.

The relation between the number N(k) of vertices
of order k and their average length R(k) determines
the fractal dimension d of the tree TX :10

N(k) = R(k)−d . (11)

Combining (10) and (11), we find:

d =
BN

BR
. (12)

The structure of the tree TX can be considered
at different levels of detail: First, one can consider
only the topological structure (Fig. 12a), where the
position of each vertex is uniquely determined by its
parent (the nearest vertex placed closer to the root);
and any permutation of siblings (the vertices with
the same parent) does not change the tree. Each
vertex is characterized by its Horton-Strahler in-
dex, and the only constraint on a tree resulting from
MTA is the maximal possible number Nh of sib-
lings, that is subtrends within a given trend. Next,
one can add the information on interval partition
(Fig. 12b): The siblings become ordered according
to the partition of the interval corresponding to
their parent. Each vertex vi is additionally char-
acterized by the length ri and the following conser-
vation law holds:

ri =
∑

rc (13)

where c runs over the indexes of the children of the
element i.

Finally, one considers error characteristics ei,
which describe the quality of the linear fit of X(t)
within the corresponding time interval (Fig. 12c).
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Fig. 13 Dependence of scaling exponents BE,R,N [Eq. (10)]
on the Hurst exponent H of FBWs. Dashed line is B =
0.7 + H.

In terms of these errors the system becomes
dissipative:

ei ≥
∑

ec (14)

with the same meaning of subindexes as in (13).
The exponents BN,R,E of (10) reflect different

statistical properties of the tree TX : BN describes
its topological structure while BR and BE relate to
the metric structures based, respectively, on prop-
erties of interval partition (r-metric) and piecewise
linear fit (e-metric).

For illustration we again use FBWs with different
Hurst exponent.

Figure 13 shows the dependence of the exponents
BN,L,E on the Hurst exponent 0 ≤ H ≤ 1. The
estimations are averaged over 100 FBWs for each
value of H. The exponents BN and BR are nearly
constant: BN ≈ 0.52, BR ≈ 0.57, while for the ex-
ponent BE we observe the linear dependence:

BE = 0.7 + H ≈ log10(5) + H . (15)

These results have an important interpretation:
All FBWs with Hurst exponent in the range 0 ≤
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H ≤ 1 have the same topological and r-metric
structures in terms of MTA tree TX . Particularly,
trees TX corresponding to different H have the same
fractal dimension d = BN/BR ≈ 0.9. The only char-
acteristic that depends on the Hurst exponent is the
fitting error (e-metric), that is, the degree of varia-
tion of X(t) within a given interval.

5. CORRELATION ANALYSIS

One of the important applications of MTA is corre-
lation analysis of time series. The major drawback
of classical correlation analysis is that interpreta-
tion of its results may be completely ruined by the
presence of long-term trends and/or modest ampli-
tude modulations of signals. The MTA can natu-
rally avoid these problems by depicting the essential
local properties of the analyzed series.

We start this section by introducing two mea-
sures of similarity for time series. One is based
solely on the time interval partition induced by MX ;
another takes into account the directions (upward
versus downward) of local trends.

5.1. Distance Between Partitions

Each level l of the tree MX (Sec. 2) corresponds to
a partition of the time interval [0, 1] into Nl non-
overlapping subintervals. Since each of these subin-
tervals corresponds to a distinct observed trend of
the series X(t), the problem of comparison of two
such partitions naturally arises. Below we introduce
the distance between two partitions.

Consider the space Ω of finite partitions of the
unit interval [0, 1]. Each partition A is defined by a
finite number nA of points; the boundaries 0 and 1
are included in all partitions:

A = {0 = a0 < a1 < · · · < anA
< anA+1 = 1} .

The trivial partition U consists only of boundary
points: U = {0, 1}.

For A, B ∈ Ω we say that B is a subpartition of A
(B ⊂ A) if all points from A are among points from
B; this imposes a partial order on Ω. A union A ∪ B
is defined as the partition consisting of the points
included in either A or B, without repetitions. An
intersection A ∩ B is defined as the partition con-
sisting of points included in both A and B.

An asymmetric distance m(A, B) from A to B
(A, B ∈ Ω) can be defined as

m(A,B) =

nA
∑

i=1

min
0≤j≤nB+1

{|ai − bj |} (16)

which gives for the trivial partition

m(A,U) ≡ m(A) =

nA
∑

i=1

min{ai, 1 − ai} .

The distance (16) is interpreted as the minimal cor-
rection to A that makes B its subpartition: B ⊂ A′,
where A′ stands for the corrected version of A.

The following properties of m(A, B) follow
directly from the definition (16):

(1) 0 ≤ m(A, B) < ∞;
(2) m(A, B) = 0 if and only if B ⊂ A;
(3) additivity with respect to A: m(A1 ∪ A2, B) =

m(A1, B) + m(A2, B); and
(4) monotonicity with respect to B (the trian-

gle inequality): m(A,B1 ∪ B2) ≤ m(A,B1) +
m(A,B2).

It is convenient to consider the symmetric
function

µ(A, B) = max{m(A, B), m(B, A)} (17)

whose small values signal that the partitions A
and B are similar. Note that µ is not a distance
since it does not satisfy the triangle inequality. The
reciprocal µ−1 may serve as a measure of partition
correlation.

5.2. Slope Sign Correlation

Here we introduce the correlation function that
describe similarity between two piecewise linear ap-
proximations L1(t) and L2(t) of X(t), t ∈ [0, 1].
(We use upper indexes in order not to mix these ar-
bitrary approximations with L1(t), and L2(t) at the
first and second levels of the decomposition.) This
correlation function is based on the coarse informa-
tion about trends from Li(t): We take into account
only their directions — upward versus downward.

First, we introduce the signed partitions P1 and
P2 of the interval [0, 1]. They are formed by the in-
tervals of constant sign of the slope of Li(t), i = 1, 2
(see Fig. 14a).

A subinterval from Pi is assigned the sign “+”
if the corresponding trend of Li(t) is upward, and
“−” if it is downward. Second, we define the signed
partition P as a union of Pi, i = 1, 2 with the
signs determined by multiplication of the signs of
the corresponding subintervals from Pi (Fig. 14b).
As a result, the positive intervals of P correspond
to matching (up to direction) trends of L1 and L2,
while negative to unmatching ones.
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Fig. 14 Signed partition corresponding to a piecewise linear approximation [panel (a)], union of signed partitions [panel
(b)], and triplet (a, b, c) for an interval of a union of partitions (see Sec. 5.2).

Each subinterval I of the partition P is formed
by intersection of two subintervals Ii ∈ Pi, i = 1, 2;
two general variants of such an intersection are
shown in Fig. 14c. A subinterval I is assigned a
triplet (a, b, c) defined as shown in Fig. 14c: b is
the length of the intersection I1 ∩ I2, while a and
c are the lengths of those parts of Ii that are not
included in the intersection. The triplet is normal-
ized: a + b + c = 1. It describes how good is the
matching of intervals Ii: The meaning of b is clear;
the best matching for a given b corresponds to the
case when the intervals’ ends coincide, that is, to
a · c = 0. The matching quality can be reflected in
the weight

w =
(1 − b) log(1 − b)

a log(a) + c log(c)

=
(a + c) log(a + c)

a log(a) + c log(c)
(18)

lying within the range 0 ≤ w ≤ 1.
The correlation function r(L1, L2) is now defined

as

r(L1, L2) =
∑

k

rk · wk . (19)

Here the summation is taken over all the subinter-
vals of the signed partition P ; rk denotes the signed
length of the kth subinterval, wk is the correspond-
ing weight (18).

The measure (19) is intentionally crude: It does
not distinguish between steepness of the trends.
More elaborate correlations can be easily defined
following the scheme outlined above. Nevertheless,
as we show in Sec. 5.3 below, even the roughest

measure (16) is very effective in detecting nonlinear
correlations.

5.3. Examples

This section illustrates applications of the correla-
tion analysis in the presence of long-term nonlinear
trends and amplitude modulations.

5.3.1. Detection of correlation

Figure 15 displays the trajectories of two processes
Fi(t), i = 1, 2 coupled by the common underlying
phenomenon which, — by and large, — makes them
change their intermediate-scale trends synchroni-
cally. The most striking similarity between Fi(t)
is observed at the intervals [0, 0.1] and [0.2, 0.55].
Also we note the synchronous peaks around t =
0.675, 0.775, 0.975 [more pronounced for F1(t)]. At
the same time, the coupling phenomenon is not a
primary one in shaping the dynamics of Fi(t), so
their overall outlooks are still quite dissimilar. In
such situations one is interested in detection and
proper quantification of the observed nonlinear cou-
pling. The problem of such a quantification consti-
tutes an important part of modern analysis of time
series.

MTA suggests an effective way of solving this
problem by comparing the trend structures of ob-
served series at different scales. We decompose the
observations Fi(t) into trees Mi and calculate the
distance µ (17) between different levels of these de-
compositions. The reciprocal µ−1 of the distance
between the signals Fi(t) is plotted as the function
of the decomposition levels li, i = 1, 2 in Fig. 16a.
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Fig. 15 Two signals coupled by an unobserved phenomenon. The signals tend to change their intermediate trends syn-
chronously, while their overall shapes are different. The striking similarity is observed at intervals [0, 0.1] and [0.2, 0.55]. Note
also the common peaks at t = 0.675, 0.775, 0.975 (see details in Sec. 5.3.1).
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Fig. 16 Correlation (reciprocal distance) µ (17) between two signals shown in Fig. 15 [panel (a)] and two independent
Brownian walks [panel (b)].

The diagonal ridge indicates pairs of levels with
similar trend structures. The prominent upwell ob-
served at the medium scales, 15 ≤ l1 ≤ 18, 14 ≤
l2 ≤ 17, signals that this range is responsible for the
observed coupling. The maximum µ−1 = 4.6 corre-
sponds to the levels l1 = 15, l2 = 14; we will refer
to them as levels of maximal correlation (LMC).
The piecewise linear approximations of Fi(t) corre-
sponding to the LMC are shown in Fig. 17. They
clearly accentuate the observed coupling.

A typical shape of µ−1 for uncoupled time series
is shown for comparison in Fig. 16b. The diagonal

ridge is still observed, though it is more blurred.
Existence of such a ridge is explained by the fact
that partitions with a similar number of segments,
even non-matching ones, are closer to each other in
the sense of (17) than partitions with significantly
different number of segments. Comparing Figs. 16a
and b, we conclude that the upwell observed in
panel (a) is not a random one and is due to the
correlation between the signals. A formal statistical
test for establishing the significance of the observed
peaks of µ−1 can be constructed. The easiest way
is to use a bootstrap approach: Simulate a large
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Fig. 17 Piecewise linear approximations Li, i = 1, 2 of the signals Fi(t) from Fig. 15 at the levels of maximal correlation
(l1 = 15, l2 = 14). These approximations depict the intermediate-scale variations responsible for the signals’ coupling.

number of uncorrelated processes (e.g. Brownian
walks) and evaluate the distribution of values of
µ−1. Then the value of observed peak can be tested
against the null hypothesis of uncorrelated walks
using the bootstrap distribution of peaks.

5.3.2. Quantification of detected

correlation

As was shown in the previous section, MTA allows
one to estimate nonlinear correlations between sig-
nals; the value µ−1 may be considered as a measure
of such correlation. Here we show how to evalu-
ate the functional form of the coupling phenomenon
responsible for the correlation detected.

To pose the problem formally, suppose that the
observations Fi(t), i = 1, 2 are formed by applying
amplitude modulations Ai(t) and adding nonlinear
trends Ti(t) to the same base signal X(t):

Fi(t) = Ai(t) · X(t) + Ti(t) + ξi(t), i = 1, 2 . (20)

Here ξi(t) are measurement errors. In this model,
the correlation between signals Fi(t) is due totally
to the X(t). The first problem is to reconstruct
trends Ti(t) and modulated signals Ai(t)·X(t) given
the observations Fi(t). Clearly, for reliable recon-
struction one has to assume an appropriate rate

of variation for the trends as well as a reasonably
small noise-to-signal ratio. In practice, we assume
that such conditions are satisfied if significant cou-
pling has been detected by the correlation analysis
of Sec. 5.3.1.

The idea of reconstruction is that the corre-
lated parts Ai · X(t) should be described by the
LMC of Mi (see Sec. 5.3.1). Accordingly, the trends
Ti(t) should be described by the higher-scale (less
detailed) levels.

As a model example we again use the series of
Fig. 15; in fact, they are produced by the model
(20) with

X(t) = sin(400πt(t − 0.5)(t − 0.7)(t − 1))

T1(t) = 5 sin(4πt3/2)

T2(t) = −5 cos(2πt3/2)

A1(t) = exp(2t)

A2(t) = 2 exp(−t/3) . (21)

The measurement errors ξi(t) are modeled by in-
dependent Brownian walks so they also represent
random drifts. The series Fi(t) together with their
components (21) are shown in Fig. 18.

The trends Ti(t) + ξi(t) are estimated by the

piecewise linear functions T̂i, formed by the parents
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Fig. 18 Structure of the signals Fi(t), i = 1, 2 shown in Fig. 15. (a) and (e) Original signals Fi(t). (b) and (f) Coupling
parts Ai(t) · X(t). (c) and (g) Nonlinear deterministic trends. (d) and (h) Random drifts.
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Fig. 19 Reconstruction (solid lines) of the coupling parts Ai(t) · X(t) (dashed lines) (see Sec. 5.3.1 for discussion).

of the vertices at the LMC, l1 = 15, l2 = 14. In other
words, each of the linear segments at the levels li
should be formed by a single non-trivial partition
of one of the trends of T̂i. By single we mean that
this is a one-time partition by the rules described
in Sec. 2; by non-trivial — that each segment is
divided into more than one subsegment. The mod-
ulated signals Ai(t) · X(t) are estimated then as

ÂiXi(t) = (Fi(t) − T̂i(t)), i = 1, 2.
The quality of these estimations is illustrated in

Fig. 19 where we show real versus estimated mod-
ulated signals AiXi(t). The estimations are almost
perfect at the intervals [0, 0.1] and [0.2, 0.55] (cf.
Fig. 15 and its discussion in Sec. 5.3.1). Generally,

we catch well the oscillatory structure of the signals;
that is, their time-dependent frequencies and direc-
tions (upward versus downward), while the ampli-
tude estimation is less precise.

The estimations of Fig. 19 can be further im-
proved by means of various kernel smoothing tech-
niques. MTA results can be used for optimization
of the time-dependent kernel width.

With additional assumptions about the rate of
variation for Ai(t) one may pose the problem of re-
constructing X(t) given two, or more, modulated
versions Ai(t) · X(t). Using the epochs assigned to
the summands of (16) (say, ai), one may analyze
time-dependent correlations within Fi(t). Clearly,
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the entire analysis can be repeated with the corre-
lation (19) as a measure of trend similarity.

6. DISCUSSION

The methods developed in this paper are based
on the computational technique (see Sec. 2) for
solving the linear interpolation problem for time
series. This problem includes two principal diffi-
culties. The first is a fundamental one: A trade-
off between the quality of a possible approximation
and its detail. The second difficulty is purely com-
putational: There are (n − 2)!/(n − 1 − k)!(k + 1)!
ways to construct a piecewise linear approximation
with a given number k of segments and n observa-
tional epochs. Clearly, the search for the optimum
over all possible approximations is unacceptable for
operational use, and computationally effective algo-
rithms are to be invented. Here we resolve the first
difficulty by introducing the optimality criterion (3)
and (4) of Sec. 2.2, and the second by replacing
the original time series with its “skeleton” that in-
cludes only the edge points defined in Sec. 2.3. The
whole analysis is then done hierarchically, in a mul-
tiscale self-similar fashion. This contributes to com-
putational efficiency as well as to the imprecision of
the final result, since the errors made in the first
steps of the decomposition may affect all the con-
secutive steps. It would therefore be interesting to
study (1) deviations of the MTA approximations
from the optimal (in a squared deviation sense)
piecewise linear approximations with the same num-
ber of segments, and (2) the history of the first-step
errors.

The procedure for edge point detection is intro-
duced here (Sec. 2.3) in its simplest (not to say most
naive) form and is subject to further improvement.
Nevertheless, even in its present form, the MTA has
the potential to be an effective tool for solving a
wide spectrum of applied problems, ranging from
exploratory data analysis to studying hierarchical
scaling for time series.

Recently, several techniques based on properties
of local linear trends were proposed and studied.
The Detrended Fluctuation Analysis (DFA)6 was
shown to be a powerful tool for multiscale anal-
ysis and interpretation of diverse medical and fi-
nancial data. Contrary to our analysis, DFA uses a
predefined interval partition scheme independent of
the particular series at hand. It is oriented toward
analysis of variations, rather than the trend struc-
ture itself. An alternative approach to the problem

of detection of local linear trends is discussed in
Cheung and Stephanopoulos.13

The problem considered in this paper naturally
extends to higher dimensions. However, it is not
clear how to apply the ideas developed here even to
two-dimensions and this issue deserves special at-
tention. Interestingly, elegant theoretical results on
rectifiable curves by Jones14 are tightly related to
detection of linear structures in point clouds. Vari-
ous methods of multiscale geometric analysis based
on Jones’ theory (Ref. 15, and references therein)
use predefined (dyadic) partition schemes. It would
be very important to find algorithms for fast lin-
earization in point clouds.

It is worth mentioning that the self-affine anal-
ysis of Sec. 3 may be done equally effectively by a
multitude of techniques, and MTA is by no means
claimed to be the most efficient one. We include
this section in order to demonstrate the diversity
of possible applications based on the single MTA
decomposition of a time series.
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APPENDIX A: MANDELBROT

CASCADE MEASURES

A Mandelbrot cascade measure M(ri,mi), i =
1, . . . , n on the interval [0, 1] is constructed as

follows. At step 0, there is a unit mass distributed
uniformly over the whole interval. At the first step
we divide the interval [0, 1] into n subintervals
of lengths ri,

∑n
i=1 ri = 1 and assign to them

masses mi,
∑n

i=1 mi = 1. Within each interval the
mass distribution is uniform. Next, we divide each
sub-interval i into n subsubintervals and assign to
them uniform masses mi · mj, j = 1, . . . , n, and
so on. Therefore, at the kth step the interval [0, 1]
is divided into nk subintervals, each carrying the
uniform mass mi1 · . . . ·mik , with ik taken from the
set 1, . . . , n with possible repetitions.

Such measures were introduced first to model
turbulent dissipation, and were studied by
Mandelbrot.16


