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Abstract
We introduce generalized dynamical pruning on rooted binary trees with edge lengths that
encompasses a number of discrete and continuous pruning operations, including the tree
erasure and Horton pruning. The pruning removes parts of a tree T , starting from the leaves,
according to a pruning function defined on descendant subtrees within T . We prove the
invariance of critical binary Galton–Watson tree with exponential edge lengths with respect
to the generalized dynamical pruning for an arbitrary admissible pruning function. These
results facilitate analysis of the continuum 1-D ballistic annihilation model A + A → ∅ for
a constant particle density and initial velocity that alternates between the values of ±1. We
show that the model’s shock wave is isometric to the level set tree of the potential function,
and themodel evolution is equivalent to the generalized dynamical pruning of the shockwave
tree.

Keywords Random self-similar trees · Galton–Watson process · Ballistic annihilation ·
Chemical kinetics

1 Introduction

Pruning of tree graphs is a natural operation that induces a contracting map [28] on a suitable
space of trees, with the empty tree φ as the fixed point. Examples of prunings studied in
probability literature include erasure from leaves at unit speed [17,21,38], cutting the leaves
[14,31,33], and eliminating nodes/edges at random [1,5]. A recent survey of random tree
measures invariant with respect to cutting the leaves is given in [34].
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1.1 Generalized Dynamical Pruning

We consider here the erasure of a tree from the leaves down at a non-constant tree-dependent
rate. Specifically, we introduce generalized dynamical pruning St (ϕ, T ) of a rooted tree
T that eliminates all subtrees Δx,T (defined as the points descendant to point x in T ) for
which the value of a function ϕ(Δx,T ) is below t (see Sect. 3 for a formal definition). The
generalized dynamical pruning encompasses a number of discrete and continuous pruning
operations, depending on the choice of function ϕ. For instance, the tree erasure from leaves
at unit speed [17,21,38] corresponds to the pruning function ϕ(T ) equal to the height of
T ; and the Horton pruning [14,33] corresponds to ϕ(T ) equal to the Horton–Strahler order
of T . For most selections of ϕ(T ), the map induced by the generalized dynamical pruning
does not have a semigroup property, which distinguishes it from the operations studied in the
literature.

In Sect. 4.3, Theorem 2 we establish invariance of the space of critical binary Galton–
Watson trees with i.i.d. exponential edge lengths with respect to the generalized dynamical
pruning, independently of (an admissible) pruning function. The invariance includes scaling
of the edge lengths by the scaling constant equal to the survival probability P(St (ϕ, T ) �= φ).
The explicit form of the survival probability is established in Theorem 3 for pruning by
tree height (erasure from leaves at unit speed), by Horton order, and by tree length. The
generalized prune invariance unifies several known invariance results (e.g., [14,38]) and
suggests a framework for studying diverse problem-specific pruning operations.

As a notable application, we consider the 1-D ballistic annihilation model and show that
its dynamics can be represented as a generalized dynamical pruning of the level set tree of
the model potential (Sects. 5, 6).

1.2 Ballistic AnnihilationModel

The ballistic annihilation model, traditionally denoted A + A → ∅, describes the dynamics
of particles on a real line: a particle with Lagrangian coordinate x moves with the velocity
v(x, 0) until it collideswith another particle, atwhichmoment both particles annihilate, hence
the model notation. The annihilation dynamics appears in chemical kinetics and bimolecular
reactions; see [7–9,13,16,18,19,35,41,44].

The annihilation dynamics produces sinks (shocks) that correspond to the collisions of
individual particles with consequent annihilation. The moving shock waves represent the
sinks that aggregate the annihilated particles and hence accumulate the mass of the media.
Dynamics of these sinks resembles a coalescent process that generates a tree structure for the
sink trajectories; we call it a shock wave tree. The dynamics of a ballistic annihilation model
with two coalescing sinks is illustrated in Fig. 1.

1.3 Ballistic Annihilation with TwoValued Initial Velocity

In Sect. 6 we consider a model on a finite interval [a, b]with a constant initial particle density
g(x, 0) = g0 and an initial velocity field v(x, 0) that alternates between the values ±1, as
illustrated in Fig. 2. Equivalently, wework with potential velocity field v(x, t) = −∂xψ(x, t)
where the initial potential Ψ0(x) = ψ(x, 0) is a piece-wise linear continuous function with
slopes ±1. We furthermore assume that Ψ0(x) is a negative excursion on [a, b]. This choice
corresponds to a particularly tractable structure of the shock wave tree, which is completely
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Fig. 1 Ballistic annihilation model: an illustration. A particle with Lagrangian coordinate x moves with
velocity v(x, 0) until it collides with another particle and annihilates. Bottom panel: Initial velocity v(x, 0).
Top panel: The space-time portrait of the system. The trajectories of selected particles are depicted by gray
thin lines. The shock wave that describes the motion and coalescence of sinks is shown by solid black line.
The sink trajectory in this example forms an inverted Y-shaped tree

Fig. 2 Piece-wise linear unit slope potential: an illustration. Top: Arrows indicate alternating directions of
particle movement on an interval in R. Middle: Potential Ψ0(x) is a piece-wise linear unit slope function.
Bottom: Particle velocity alternates between values ±1 within consecutive intervals

described in this work. In particular, the combinatorial structure and planar embedding of the
shock wave tree coincides with that of the level set tree T = level(ψ(x, 0)) of the initial
potential (Sect. 6, Theorem 4).
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1.4 Ballistic Annihilation as Dynamical Pruning

The main applied result of our work (Sect. 6, Theorem 6) states that the ballistic annihilation
dynamics in case of a unit slope potential is equivalent to the generalized dynamical pruning
of the shock wave tree with pruning function ϕ(τ) equal to the total length of τ .

The pruned tree in this construction describes the potential restricted to the domain of
particles that did not annihilate until instant t . To retain information about sinks and empty
intervals, we equip a tree with massive points, placed at the tree cuts—the boundary of the
pruned tree parts (Sect. 6.4, Definition 3). A complete description of ballistic annihilation
dynamics is then given in terms of mass-equipped trees, which involves a suitably modified
definition of pruning (Sect. 6.4). In particular, we establish a one-to-one correspondence
between pruned mass-equipped trees and time-advanced potentials ψ(x, t) with massive
sinks (Sect. 6.4, Constructions 1, 2).

Theorem 7 describes the ballistic annihilation dynamics for the initial velocity field that
alternates between ±1 at epochs of a stationary Poisson point process on R. The respective
potential corresponds to the Harris path of a critical binary Galton–Watson tree with i.i.d.
exponential edge lengths. This equivalence allows one to use a suit of results available for the
exponential Galton–Watson tree to study the ballistic annihilation; in particular, this connects
the ballistic annihilation dynamics with the invariance results of Theorems 2 and 3. We use
this connection to derive the time-dependent mass distribution of a random sink in an infinite
potential (Sect. 6.6, Theorem 9).

The rest of the paper is organized as follows. Section 2 collects necessary results on level
set trees. The generalized dynamical pruning is introduced in Sect. 3. The critical binary
Galton–Watson trees with i.i.d. exponential edge lengths are introduced and examined in
Sect. 4. In particular, the invariance of such trees with respect to the generalized dynamical
pruning is established in Sect. 4.3. A continuum 1-D ballistic annihilation model A+ A → ∅

is introduced in Sect. 5. The dynamics of this model with piece-wise unit slope potential is
analyzed in Sect. 6. Sections 6.5 and 6.6 examine a unit slope potential with exponential
segments durations (Poisson epoch velocity alterations), for a finite and infinite domain,
respectively. Section 7 discusses a real tree representation of ballistic annihilation. Section 8
concludes.

2 Trees

This section discusses the basic tools of our analysis—level set tree (Sect. 2.2) and Harris
path (Sect. 2.3). We use the framework described in [34] and refer to that work for further
details. We start with introducing the relevant spaces of trees.

2.1 Spaces of Trees

Consider the space T of finite unlabeled rooted reduced trees with no planar embedding.
The (combinatorial) distance between a pair of tree vertices is the number of edges in the
shortest path between them. A tree is called rooted if one of its vertices, denoted by ρ, is
selected as the tree root. The existence of root imposes a parent-offspring relation between
each pair of adjacent vertices: the one closest to the root is called the parent, and the other the
offspring. The space T includes the empty tree φ comprised of a root vertex and no edges.
The absence of planar embedding in this context is the absence of order among the offspring
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of the same parent. The tree root is the only vertex that does not have a parent. We write
#T for the number of non-root vertices, equal to the number of edges, in a tree T . Hence,
a finite tree T = ρ ∪ {vi , ei }1≤i≤#T is comprised of the root ρ and a collection of non-root
vertices vi , each of which is connected to its unique parent parent(vi ) by the parental edge
ei , 1 ≤ i ≤ #T . A tree is called reduced if it has no vertices of degree 2, with the root as the
only possible exception.

The space of trees from T with positive edge lengths is denoted by L. The trees in L,
also known as weighted tree [42], can be considered metric spaces. Specifically, the trees
from L are isometric to one-dimensional connected sets comprised of a finite number of line
segments that can share end points. The distance along tree paths is defined according to the
Lebesgue measure on the edges.

We write Tplane and Lplane for the spaces of trees from T and L with planar embedding,
respectively. Any tree from T or L can be embedded in a plane by selecting an order for the
offsprings of the same parent. Unless indicated otherwise, the vertices of an embedded tree
are indexed in order of depth-first search, starting from the root.

Sometimes we focus on the combinatorial tree shape(T ), which retains the combinatorial
structure of T ∈ L (or Lplane) while omitting its edge lengths and embedding. Similarly, the
combinatorial tree p- shape(T ) retains the combinatorial structure of T ∈ Lplane and planar
embedding, and omits the edge length information. Here shape is a projection from L or
Lplane to T , and p- shape is a projection from Lplane to Tplane.

A non-empty rooted tree is called planted if its root has degree 1; in this case the only edge
connected to the root is called the stem. Otherwise the root has degree≥ 2 and a tree is called
stemless.We denote byL| andL∨ the subspaces ofL consisting of planted and stemless trees,
respectively. HenceL = L| ∪L∨. Also, we let the empty tree φ to be contained in each of the
spaces. Therefore, L| ∩L∨ = {φ}. Similarly, we write L|

plane and L∨
plane for the subspaces of

Lplane consisting of planted and stemless trees, respectively. Clearly, Lplane = L|
plane ∪L∨

plane

and L|
plane ∩ L∨

plane = {φ}. Figure 3 shows examples of a planted and a stemless tree.
For any spaceS from the list {T , Tplane,L,Lplane}wewriteBS for the respective subspace

of binary trees, S | for the subspace of planted trees in S including φ, and S∨ for the subspace
of stemless trees in S including φ. We also consider subspaces BS | = S | ∩ BS of planted
binary trees and BS∨ = S∨ ∩ BS of stemless binary trees.
Let lT = (l1, . . . , l#T ) with li > 0 be the vector of edge lengths of a tree T ∈ L (or Lplane).
The length of a tree T is the sum of the lengths of its edges:

length(T ) =
#T∑

i=1

li .

Recall that a tree T ∈ L can be considered as a metric space with distance d(·, ·) induced
by the Lebesgue measure along the tree edges [34]. The height of a tree T is the maximal
distance between the root and a vertex:

height(T ) = max
1≤i≤#T

d(vi , ρ).

2.2 Level Set Tree

This section introduces a tree representation of continuous functions, which we call a level
set tree.
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Fig. 3 Examples of planted (a)
and stemless (b) trees

(a) (b)

We begin by assuming a finite number of local extrema; this construction is more intuitive
and is sufficient for analysis of finite trees from Lplane. Consider a closed interval I ⊂ R and
function f (x) ∈ C(I ), whereC(I ) is the space of continuous functions from I toR. Suppose
that f (x) has a finite number of distinct local minima. The level set Lα ( f ) is defined as the
pre-image of the function values equal to or above α:

Lα = Lα( f ) = {x ∈ I : f (x) ≥ α}.
The level set Lα for each α is a union of non-overlapping intervals; we write |Lα| for their
number. Notice that |Lα| = |Lβ | as soon as the interval [α, β] does not contain a value of
local extrema of f (x) and 0 ≤ |Lα| ≤ n, where n is the total number of the local maxima of
f (x) over I .
The level set tree level( f ) ∈ Lplane is a tree that describes the structure of the level

sets Lα as a function of threshold α, as illustrated in Fig. 4. Specifically, there are bijections
between

(i) the leaves of level( f ) and the local maxima of f (x);
(ii) the internal (parental) vertices of level( f ) and the local minima of f (x), excluding

possible local minima achieved on the boundary ∂ I ;
(iii) a pair of subtrees of level( f ) rooted in the parental vertex that corresponds to a local

minima f (x∗) and the adjacent positive excursions (or meanders bounded by ∂ I ) of
f (x) − f (x∗) to the right and left of x∗.

Furthermore, every edge in the tree is assigned a length equal the difference of the values of
f (x) at the local extrema that correspond to the vertices adjacent to this edge according to the
bijections (i) and (ii) above. The tree root corresponds to the global minimum of f (x) on I . If
the minimum is achieved at x ∈ I \∂ I , then the level set tree is stemless, level( f ) ∈ L∨

plane;
this case is shown in Fig. 4. Otherwise, if the minimum is on the boundary ∂ I , then the level
set tree is planted, level( f ) ∈ L|

plane.
In general, for a function f (x) ∈ C(I ) on a closed interval I ⊂ R, the level set tree

is defined via the framework developed in Aldous [3,4] and Pitman [42]. Specifically, let
f [a, b] := inf x∈[a,b] f (x) for any subinterval [a, b] ⊂ I . We define a pseudo-metric on I
as [4,42]

d f (a, b) :=
(

f (a) − f [a, b]
)

+
(

f (b) − f [a, b]
)

, a, b ∈ I . (1)

We write a ∼ f b if d f (a, b) = 0. Here d f is a metric on the quotient space I f ≡ I/∼ f . It
can be shown [42] that

(
I f , d f

)
is a tree. This construction is know as the tree in continuous

path [42, Definition 7.6], [21, Ex. 3.14]. In case of a finite number of local extrema, this
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(a) (b)

Fig. 4 Function f (x) (a) with a finite number of local extrema and its level set tree level( f ) (b). In this figure,
the distances on a tree (edge lengths) are measured along the y-axis. Dashed horizontal lines and numbers
1, . . . , 7 illustrate correspondence between the local extrema of f (x) and vertices of level( f )

construction coincides with the level-set description given above, that is
(
I f , d f

)
is isometric

to level( f ).

2.3 Harris Path

For any embedded tree T ∈ Lplane with edge lengths, the Harris path is defined as a piece-
wise linear function [27,42]

HT (t) : [0, 2 · length(T )] → R

that equals the distance from the root traveled along the tree T in the depth-first search, as
illustrated in Fig. 5. For a tree T with n leaves, the Harris path HT (t) is a piece-wise linear
positive excursion that consists of 2n linear segments with alternating slopes ±1.

2.4 Reciprocity of Harris Path and Level Set Tree

Consider a function f (x) ∈ C(I )with a finite number of distinct local minima. By construc-
tion, the level set tree level( f ) is completely determined by the sequence of the values of
local extrema of f , and is not affected by timing of those extrema, as soon as their order is
preserved. This means, for instance, that if g(x) is a continuous and monotone increasing
function on I , then the trees level( f ) and level( f ◦ g) are equivalent in Lplane. Hence,
without loss of generality we can focus on the level set trees of continuous functions with
alternating slopes ±1. We write Eex for the space of all positive piece-wise linear continuous
finite excursions with alternating slopes ±1 and a finite number of segments (i.e., a finite
number of local extrema). Recall that a continuous function f (x) on a finite interval [0, a]
is called an excursion if f (0) = f (a) = 0 and f (x) > 0 for any x ∈ [0, a].

The level set tree of an excursion from Eex and Harris path are reciprocal to each other as
described in the following statement.

Proposition 1 (Reciprocity of Harris path and level set tree) The Harris path H : L|
plane →

Eex and the level set tree level : Eex → L|
plane are reciprocal to each other. This means
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(a) (b)

Fig. 5 a Tree T and its depth-first search illustrated by dashed arrows. b Harris path HT (t) for the tree T of
(a)

that for any T ∈ L|
plane we have level(HT (t)) ≡ T , and for any g(t) ∈ Eex we have

Hlevel(g)(t) ≡ g(t).

This statement is illustrated in Fig. 5.

3 Generalized Dynamical Pruning

This section introduces a general way to prune (cut, erase) a tree from leaves down to the root
in an adaptive, non-anticipating way, so that the cutting process is completely determined
by the parts of the tree that have been cut and is independent of the intact part of the tree.

3.1 Definition and Examples

Given a tree T ∈ L and a point x ∈ T , letΔx,T be the descendant tree of x : it is comprised of
all points of T descendant to x , including x ; see Fig. 6a. Then Δx,T is itself a tree in L with
root at x . Let T1 = (M1, d1) and T2 = (M2, d2) be two metric rooted trees, and let ρ1 denote
the root of T1. A function f : T1 → T2 is said to be an isometry if Image[ f ] ⊆ Δ f (ρ1),T2
and for all pairs x, y ∈ T1,

d2
(

f (x), f (y)
) = d1(x, y).

The tree isometry is illustrated in Fig. 6b. We use the isometry to define a partial order in
the space L as follows. We say that T1 is less than or equal to T2 and write T1 � T2 if there
is an isometry f : T1 → T2. The relation � is a partial order as it satisfies the reflexivity,
antisymmetry, and transitivity conditions. Moreover, a variety of other properties of this
partial order can be observed, including order denseness and semi-continuity.

We say that a function ϕ : L → R is monotone nondecreasing with respect to the partial
order � if ϕ(T1) ≤ ϕ(T2) whenever T1 � T2. Consider a monotone nondecreasing function
ϕ : L → R+. We define the generalized dynamical pruning operator St (ϕ, T ) : L → L
induced by ϕ for any t ≥ 0 as

St (ϕ, T ) := ρ ∪
{

x ∈ T \ ρ : ϕ
(
Δx,T

) ≥ t
}
, (2)

where ρ denotes the root of tree T . Informally, the operator St cuts all subtrees Δx,T for
which the value of ϕ is below threshold t , and always keeps the tree root. Extending the partial
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(a) (b)

Fig. 6 Descendant subtree and tree isometry: an illustration. a Subtree Δx,T (solid black lines) descendant to
a point x (gray circle) in a tree T (union of dashed gray and soling black lines). b Isometry of trees. Tree T1
(left) is mapped to tree T2 (right). The image of T1 within T2 is shown by black lines, the rest of T2 is shown
by dashed gray lines. Here, tree T1 is less than tree T2, T1 � T2

order to L by assuming φ � T for all T ∈ L, we observe for any T ∈ L that Ss(T ) � St (T )

whenever s ≥ t .
The dynamical pruning operator St encompasses and unifies a range of problems, depend-

ing on a choice of ϕ, as we illustrate in the following examples.

Example 1 (Pruning via the tree height) Let the function ϕ(T ) equal the height of tree T :

ϕ(T ) = height(T ). (3)

In this case the operator St satisfies continuous semigroup property:

St ◦ Ss = St+s for any t, s ≥ 0.

It coincides with the continuous pruning (tree erasure) studied in Neveu [38], who established
invariance of a critical and sub-critical binaryGalton–Watson processeswith i.i.d. exponential
edge lengths with respect to this operation.

It is readily seen that for a coalescent process [42], the dynamical pruning St of the
corresponding coalescent tree with ϕ(T ) as in (3) replicates the coalescent process. More
specifically, the timing and order of particle mergers is reproduced by the dynamics of the
leaves of St (ϕ, T ). See Sect. 6.4, Theorem 5 for a specific version of this statement for the
coalescent dynamics of shocks in the continuum ballistic annihilation model.

Example 2 (Pruning via the Horton–Strahler order) Let the function ϕ(T ) + 1 equal the
Horton–Strahler order k(T ) of a tree T :

ϕ(T ) = k(T ) − 1. (4)

The Horton–Strahler order [14,30,34,40] is defined via the operationR of Horton pruning—
cutting the leaves with consecutive series reduction (removing degree-2 vertices), as is
illustrated in Fig. 7. The pruning induces a contracting map on BLplane. The trajectory of
each tree T under R(·) is uniquely determined and finite:

T ≡ R0(T ) → R1(T ) → · · · → Rk(T ) = φ, (5)

123

Author's personal copy



Y. Kovchegov, I. Zaliapin

Fig. 7 Horton pruning and Horton–Strahler ordering: an example. The order of the tree is k(T ) = 3, since
the tree T is eliminated in three prunings. Each pruning consists of cutting leaves (top row) and consecutive
series reduction (bottom row). The pruning trajectory T → R(T ) → R2(T ) → R3(T ) = φ is shown in the
bottom row of panels

with the empty tree φ as the (only) fixed point [33,34]. The Horton–Strahler order k(T ) of
a planted tree from BL|

plane is the minimal number of prunings necessary to eliminate a tree
T . The Horton–Strahler order k(T ) of a stemless tree from BL∨

plane is the minimal number
of prunings necessary to eliminate a tree T plus one.

With the choice (4) the dynamical pruning operator coincides with the Horton pruning:
St = R�t�. It is readily seen that St satisfies discrete semigroup property:

St ◦ Ss = St+s for any t, s ∈ N0.

A recent survey of results related to invariance of a tree distribution with respect to Horton
pruning is given in [34].

Example 3 (Pruning via the tree length) Let the function ϕ(T ) equal the total lengths of T :

ϕ(T ) = length(T ). (6)

The dynamical pruning by the tree length is illustrated in Fig. 8 for a Y-shaped tree that
consists of three edges.

Importantly, in this case St does not satisfy the semigroup property. To see this, consider
an internal vertex point x ∈ T (see Fig. 8, where the only internal vertex is marked by a
gray ball). Then Δx,T consists of point x as its root, the left subtree of length a and the right
subtree of length b. Observe that the whole left subtree is pruned away by time a, and the
whole right subtree is pruned away by time b. However, since

ϕ(Δx,T ) = length(Δx,T ) = a + b,
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Fig. 8 Pruning by tree length: an illustration. Figure shows five generic stages in the dynamical pruning of
a Y-shaped tree T , with pruning function ϕ(T ) = length(T ). The pruned tree St is shown by solid black
lines; the pruned parts of the initial tree are shown by dashed gray lines. Stage I Initial tree T consists of three
edges, with lengths a, b, c indicated in the panel; without loss of generality we assume a < b. Stage II For
any t < a the pruned tree St has a Y-shaped form with leaf edges truncated by t . Stage III For any a ≤ t < b
the pruned tree St consists of a single edge of length c+b− t . Stage IV For any b ≤ t ≤ a +b the pruned tree
St consists of a single edge of length c. Notice that during this stage the tree St does not change with t ; this
loss of memory causes the process to violate the semigroup property. Stage V For any a + b < t < a + b + c
the pruned tree St consists of a single edge of length a + b + c − t

the junction point x will not be pruned until time instant a + b. Thus, x will be a leaf of
St (ϕ, T ) for all t such that

max{a, b} ≤ t ≤ a + b.

This situation corresponds to Stage IV in Fig. 8.
The semigroup property in this example can be introduced by consideringmass-equipped

trees. Informally, we replace each pruned subtree τ of T with a point of mass equal to the
total length of τ . The massive points contain some of the information lost during the pruning
process, which is enough to establish the semigroup property. Specifically, by time a, the
pruned away left subtree (Fig. 8, Stage III) turns into a massive point of mass a attached to x
on the left side. Similarly, by time b, the pruned away right subtree (Fig. 8, Stage IV) turns
into a massive point of mass b attached to x on the right side. For max{a, b} ≤ t ≤ a + b,
this construction keeps track of the quantity a + b − t associated with point x , and when
the quantity a + b − t decreases to 0, the two massive points coalesce into one. If at instant
t a single massive point seats at a leaf, its mass m = t , and the leaf’s parental edge is
being pruned. If at instant t two massive points (left and right) seat at a leaf, they total
mass m ≥ t , and further pruning of the leaf’s parental edge is prevented until the instant
t = m, when the two massive points coalesce. Keeping track of all such quantities makes
St to satisfy the continuous semigroup property. This construction is formally introduced in
Sect. 5, which shows that the pruning operatorSt with the pruning function (6) coincides with
the potential dynamics of continuum mechanics formulation of the 1-D ballistic annihilation
model A + A → ∅.

Example 4 (Pruning via the number of leaves) Let the function ϕ(T ) equal the number
of leaves in a tree T . This choice is closely related to the mass-conditioned dynamics of an
aggregation process. Specifically, consider N singletons (particles with unit mass) that appear
in a system at instants tn ≥ 0, 1 ≤ n ≤ N . The existing clusters merge into consecutively
larger clusters by pair-wise mergers. The cluster mass is additive: a merger of two clusters

123

Author's personal copy



Y. Kovchegov, I. Zaliapin

of masses i and j results in a cluster of mass i + j . We consider a time-oriented tree T
that describes this process. The tree T has N leaves and (N − 1) internal vertices. Each leaf
corresponds to an initial particle, each internal vertex corresponds to a merger of two clusters,
and the edge lengths represent times between the respective mergers. The action of St on
such a tree coincides with a conditional state of the process that only considers clusters of
mass ≥ t . A well-studied special case is a coalescent process with a kernel K (i, j), where
all particles appear at instant t = 0 and each pair of clusters with masses i, j merges with
intensity proportional to K (i, j) = K ( j, i), independently of all other pairs.

3.2 Pruning forR-Trees

The generalized dynamical pruning is readily applied to real trees (Sect. 7), although this
is not the focus of our work. We notice that the total tree length (Example 3) and number
of leaves (Example 4) might be undefined (infinite) for an R-tree. We introduce in Sect. 7.3
a mass function that can serve as a natural general analog of these and other functions on
finite trees. We show (Sect. 6.4, Theorem 6) that pruning by mass is equivalent to the pruning
by the total tree lengths in a particular situation of ballistic annihilation model with piece-
wise continuous potential with a finite number of segments. Accordingly, our results should
be straightforwardly extended to R-trees that appear, for instance, as a description of the
continuum ballistic annihilation dynamics for other initial potentials.

3.3 Relation to Other Generalizations of Pruning

A pruning operation similar in spirit to the generalized dynamical pruning was considered
in a work by Duquesne and Winkel [17] that extended a formalism by Evans [21] and
Evans et al. [22]. We notice that the two definitions of pruning, the generalized dynamical
pruning of Sect. 3 and that in [17], are principally different, despite their similar appearance.
In essence, the work [17] assumes the Borel measurability with respect to the Gromov–
Hausdorffmetric [17, Sect. 2],which implies the semigroupproperty of the respective pruning
[17, Lemma 3.11]. On the contrary, the generalized dynamical pruning defined here may
have the semigroup property only under very particular choices of ϕ(T ) as in the examples
in Sects. 1 and 2. The majority of natural choices of ϕ(T ), including the tree length ϕ(T ) =
length(T ) (Example 3) or the number of leaves in a tree (Example 4), do not satisfy the
semigroup property, and hence are not covered by the pruning of [17]. Themain results of our
Sect. 5 refer to the pruning function ϕ(T ) = length(T ) that does not satisfy the semigroup
property, as shown in Sect. 3.

3.4 Invariance with Respect to the Generalized Dynamical Pruning

Consider a tree T ∈ Lplane with edge lengths given by a vector lT = (l1, . . . , l#T ). The
vector lT can be specified by distribution χ(·) of a point xT = (x1, . . . , x#T ) on the standard
simplex

Δ#T =
{

xi :
#T∑

i

xi = 1, 0 < xi ≤ 1

}
,
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and conditional distribution F(·|xT ) of the tree length length(T ), so that

lT = xT · length(T ).

Accordingly, a tree T can be completely specified by its planar shape, a vector of proportional
edge lengths, and the total tree length:

T = {p- shape(T ), xT , length(T )
}
.

A measure η on Lplane is a joint distribution of these three components:

η(T ∈ {τ, dx̄, d�}) = μ(τ) · χτ (dx̄) · Fτ,x̄ (d�),

where the tree planar shape is specified by

μ(τ) = Law
(
p- shape(T ) = τ

)
, τ ∈ Tplane,

the relative edge lengths is specified by

χτ (x̄) = Law
(
xT = x̄ | p- shape(T ) = τ

)
, x̄ ∈ Δ#T ,

and the total tree length is specified by

Fτ,x̄ (�) = Law
(
length(T ) = � | xT = x̄, p- shape(T ) = τ

)
, � ≥ 0.

Let us fix t ≥ 0 and a function ϕ : Lplane → R+ that is monotone nondecreasing with respect
to the partial order �. We denote by S−1

t (ϕ, T ) the preimage of a tree T ∈ Lplane under the
generalized dynamical pruning:

S−1
t (ϕ, T ) = {τ ∈ Lplane : St (ϕ, τ ) = T }.

Consider the distribution of edge lengths induced by the pruning:

Ξτ (x̄) = Law
(

xT̃ = x̄ | p- shape(T̃ ) = τ
)

and

Φτ,x̄ (�) = Law
(
length

(
T̃
) = � | xT̃ = x̄, p- shape

(
T̃
) = τ

)
,

where the notation T̃ := St (ϕ, T ) is used for brevity.

Definition 1 (Generalized prune invariance) Consider a function

ϕ : Lplane → R+

that is monotone nondecreasing with respect to the partial order �. A measure η on Lplane

is called invariant with respect to the generalized dynamical pruning St (·) = St (ϕ, ·) (or
simply prune invariant) if the following conditions hold for all t ≥ 0:

(i) The measure is prune-invariant in shapes. This means that for the pushforward measure
ν = (St )∗(μ) = μ ◦ S−1

t we have

μ(τ) = ν(τ |τ �= φ).

(ii) The measure is prune-invariant in edge lengths. This means that for any combinatorial
planar tree τ ∈ Tplane

Ξτ (x̄) = χτ (x̄)
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and there exists a scaling exponent ζ ≡ ζ(ϕ, t) > 0 such that for any relative edge length
vector x̄ ∈ Δ#τ we have

Φτ,x̄ (�) = ζ−1Fτ,x̄

(
�

ζ

)
.

This definition unifies multiple invariance properties examined in the literature. For exam-
ple, the classical work by Neveu [38] establishes prune invariance of critical Galton–Watson
trees with i.i.d. exponential edge lengths with respect to tree erasure from leaves at a unit rate,
which is equivalent to the generalized dynamical pruning with function ϕ(T ) = height(T )

(see Example 1). Prune invariance with respect to the Horton pruning (see Example 2 and
Fig. 7) has been established by Burd et al. [14] for the combinatorial binary critical Galton–
Watson trees with no edge lengths. A comprehensive treatment of tree measures invariant
with respect to the Horton pruning is given in [34]. Duquesne and Winkel [17] established
prune-invariance of critical Galton–Watson trees with i.i.d. exponential edge lengths with
respect to so-called hereditary property, which includes the tree erasure of Example 1 and
Horton pruning of Example 2. Section 4.3 below establishes prune invariance of critical
binary Galton–Watson trees with i.i.d. exponential edge lengths with respect to arbitrary
generalized pruning.

4 Exponential Critical Binary Galton–Watson Tree GW(�)

Recall that a (combinatorial) critical binary Galton–Watson tree T ∈ T describes a trajectory
of the Galton–Watson branching process. The process starts with a single progenitor (tree
root) at time t = 0. At each discrete time step every existing population member terminates
and produces, equiprobably, either no or two offspring, independently of the other members.
We denote the resulting tree distribution on T by GWcrit .

Definition 2 (Exponential critical binary Galton–Watson tree) We say that a random tree
T ∈ BL|

plane is an exponential critical binary Galton–Watson tree with parameter λ > 0, and

write T
d= GW(λ), if

(i) shape(T ) is a critical binary Galton–Watson tree GWcrit ,
(ii) the orientation for every pair of siblings in T is random and symmetric (e.g., in each pair

of siblings, a randomly and uniformly selected sibling is assigned a right orientation, and
the other is assigned a left orientation),

(iii) given shape(T ), the edges of T are sampled as independent exponential randomvariables
with parameter λ, i.e., with density

φλ(x) = λe−λx1{x≥0}. (7)

The following result is well-known.

Theorem 1 [42, Lemma 7.3], [36,39] Consider a random excursion Xt ∈ Eex. The level set
tree level(Xt ) is an exponential critical binary Galton–Watson tree GW(λ) if and only if
the rises and falls of Xt , excluding the last fall, are distributed as independent exponential
random variables with parameter λ/2.

Consider a random walk {Xk}k∈Z with a homogeneous transition kernel p(x, y) ≡ p(x −
y), for any x, y ∈ R, given by a mixture of exponential jumps (Laplace distribution):

p(x) = φλ(x) + φλ(−x)

2
= λ

2
e−λ|x |, −∞ < x < ∞. (8)
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This process is called a symmetric exponential random walkwith parameter λ. Each symmet-
ric exponential random walk with parameter λ corresponds to a piece-wise linear continuous
function {Xt }t∈R with slopes ±1 whose alternating rises and falls, taken from {Xk}k∈Z, have
independent exponential lengths with parameter λ/2. Specifically, consider a piece-wise lin-
ear function that interpolates the local extrema of Xk ; then transform the time in such a
way that the slopes of the linear interpolation are ±1. There is one-to-one correspondence
between the infinite sequences of the values of local extrema of {Xt }t∈R and {Xk}k∈Z. We
refer to such a function as a symmetric exponential random walk with parameter λ/2 on R.

Corollary 1 The Harris path HGW(λ) of an exponential critical binary Galton–Watson tree
with parameter λ is an excursion of a symmetric exponential random walk {Xt }t∈R with
parameter λ/2.

The main result of this work is Theorem 2 of Sect. 4.3 that establishes invariance of
exponential critical binaryGalton–Watson treeGW(λ)with respect to an arbitrary generalized
dynamical pruning.We begin by finding the distributions of the length and height of this tree;
these two distributions are used in Theorem 3 that specifies the scaling of edges in GW(λ)

after selected prunings.

4.1 Length of a RandomTreeGW(�)

Recall the modified Bessel functions of the first kind

Iν(z) =
∞∑

n=0

( z
2

)2n+ν

Γ (n + 1 + ν) n! .

Lemma 1 Suppose T
d= GW(λ) is an exponential critical binary Galton–Watson tree with

parameter λ. The total length of the tree T has the probability density function

�(x) = 1

x
e−λx I1

(
λx
)
, x > 0. (9)

Proof The number of different combinatorial shapes of a planar binary tree with n +1 leaves,
and therefore 2n + 1 edges, is given by the Catalan number Cn = 1

n+1

(2n
n

) = (2n)!
(n+1)!n! . The

total length of 2n + 1 edges is a gamma random variable with parameters λ and 2n + 1 and
density function

γλ,2n+1(x) = λ2n+1x2ne−λx

Γ (2n + 1)
, x > 0.

Hence, the total length of the tree T has the probability density function

�(x) =
∞∑

n=0

Cn

22n+1 · λ2n+1x2ne−λx

(2n)! =
∞∑

n=0

λ2n+1x2ne−λx

22n+1(n + 1)!n!

= 1

x
e−λx

∞∑

n=0

(
λx
2

)2n+1

Γ (n + 2) n! = 1

x
e−λx I1

(
λx
)
. (10)

��
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Next, we compute the Laplace transform of �(x). By the summation formula in (10),

L�(s) =
∞∫

0

∞∑

n=0

Cn

22n+1 · λ2n+1x2ne−(λ+s)x

(2n)! dx

=
∞∑

n=0

Cn

22n+1 ·
(

λ

λ + s

)2n+1 ∞∫

0

(λ + s)2n+1x2ne−(λ+s)x

(2n)! dx

=
∞∑

n=0

Cn

22n+1 ·
(

λ

λ + s

)2n+1

= Z · c(Z2),

where we let Z = λ
2(λ+s) , and the characteristic function of Catalan numbers

c(z) =
∞∑

n=0

Cnzn = 2

1 + √
1 − 4z

is well known. Therefore

L�(s) = Z · c(Z2) = λ

λ + s +√(λ + s)2 − λ2
. (11)

Note that the Laplace transformL�(s) could be derived from the total probability formula

�(x) = 1

2
φλ(x) + 1

2
φλ ∗ � ∗ �(x), (12)

where φλ(x) is the exponential p.d.f. (7). Thus, L�(s) solves

L�(s) = 1

2

λ

λ + s

(
1 + (L�(s)

)2)
. (13)

Corollary 2 The probability density function f (x) of the length of an excursion in an expo-
nential symmetric random walk with parameter λ is given by

f (x) = 1

2
�(x/2). (14)

Proof Observe that the excursion has twice the length of a tree GW(λ). ��

4.2 Height of a RandomTreeGW(�)

Lemma 2 Suppose T
d∼ GW(λ) is an exponential critical binary Galton–Watson tree with

parameter λ. Then, the height height(T ) of the tree T has the cumulative distribution
function

H(x) = λx

λx + 2
, x > 0. (15)

Proof The proof is based on duality between trees and positive real excursions. Specifically,
Theorem 1 establishes equivalence between the level set tree of a positive excursion of an
exponential random walk (Definition 4) and an exponential critical binary Galton–Watson

tree GW(λ). This implies, in particular, that for a tree T
d∼ GW(λ) the height(T ) has the

same distribution as the height of a positive excursion of an exponential randomwalk Yk with
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Y0 = 0 and independent increments Yk+1 − Yk distributed according to the Laplace density
function φλ(x)+φλ(−x)

2 = λ
2 e−λ|x |, with φλ(x) defined in (7).

Notice that Yk is a martingale. We condition on Y1 > 0, and consider an excursion
Y0, Y1, . . . , Yτ− with τ− = min{k > 1 : Yk ≤ 0} denoting the termination step of the
excursion. For x > 0, we write

px = 1 − H(x) = P
(

max
j : 0< j<τ−

Y j > x
∣∣∣ Y1 > 0

)

for the probability that the height of the excursion exceeds x . The problem of finding px is
solved using the Optional Stopping Theorem. Let

τx = min{k > 0 : Yk ≥ x} and τ := τx ∧ τ−.

Observe that

px = P(τ = τx | Y1 > 0).

For a fixed y ∈ (0, x), by the Optional Stopping Theorem, we have

y = E[Yτ | Y1 = y]
= E[Yτ | τ = τ−, Y1 = y] P(τ = τ− | Y1 = y)

+ E[Yτ | τ = τx , Y1 = y] P(τ = τx | Y1 = y)

= E[Yτ | Yτ ≤ 0, Y1 = y]P (τ = τ− | Y1 = y)

+ E[Yτ | Yτ ≥ x, Y1 = y] P(τ = τx | Y1 = y)

= − 1

λ
P(τ = τ− | Y1 = y) +

(
x + 1

λ

)
P(τ = τx | Y1 = y)

=
(

x + 2

λ

)
P(τ = τx | Y1 = y) − 1

λ
.

Hence,

P(τ = τx | Y1 = y) = y + 1
λ

x + 2
λ

.

Thus,

P
(
τ = τx , 0 < Y1 < x | Y1 > 0

)
=

x∫

0

P(τ = τx | Y1 = y) λe−λydy

=
x∫

0

y + 1
λ

x + 2
λ

λe−λydy

= 2

λx + 2
− e−λx ,

and therefore,

px = P
(

max
j : 0< j<K

Y j > x | Y1 > 0

)

= P
(
τ = τx , 0 < Y1 < x | Y1 > 0

)
+ P
(
τ = τx , Y1 ≥ x | Y1 > 0

)

= 2

λx + 2
− e−λx + P

(
Y1 ≥ x | Y1 > 0

)
= 2

λx + 2
.
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Hence,

H(x) = 1 − px = λx

λx + 2
.

��

4.3 Prune Invariance ofGW(�)

This section establishes prune invariance of exponential Galton–Watson trees with respect
to arbitrary generalized pruning.

Theorem 2 Let T
d∼ GW(λ), T ∈ BL|

plane, be an exponential critical binary Galton–Watson

tree with parameter λ > 0. Then, for any monotone nondecreasing function ϕ : BL|
plane →

R+ and any Δ > 0 we have

T Δ := {SΔ(ϕ, T )|SΔ(ϕ, T ) �= φ} d∼ GW(λpΔ(λ, ϕ)),

where pΔ(λ, ϕ) = P(SΔ(ϕ, T ) �= φ). That is, the pruned tree T Δ conditioned on surviving
is an exponential critical binary Galton–Watson tree with parameter

EΔ(λ, ϕ) = λpΔ(λ, ϕ).

Proof Let X denote the length of the stem (edge adjacent to the root) in T , and Y denote the
length of the stem in T Δ. Let x be the nearest descendent vertex (a junction or a leaf) to the
root in T . Then X , which is an exponential random variable with parameter λ, represents the
distance from the root of T to x . Let degT (x) denote the degree of x in tree T and degT Δ(x)

denote the degree of x in tree T Δ. If T Δ = φ, then Y = 0. Let

F(h) = P(Y ≤ h | SΔ(ϕ, T ) �= φ).

Let xh denote a point in T located at distance h from the root, if such exists. If X ≥ h, the
choice of xh is unique. The event {Y ≤ h} is partitioned into the following non-overlapping
sub-events S1, . . . ,S4 illustrated in Fig. 9:

(S1) The event S1 = {degT (x) = 1 and X ≤ h
}
has probability

P(S1) = 1

2
(1 − e−λh)

as P
(
degT (x) = 1

) = 1
2 and P(X ≤ h) = 1 − e−λh .

(S2) Denote pΔ = pΔ(λ, ϕ). The event

S2 = {X > h and all points of T descendant to xh do not belong to T Δ
}

has probability

P(S2) = e−λh(1 − pΔ)

as P(X > h) = e−λh and

P
(
all points of T descendant to xh do not belong to T Δ | X > h

)

= P
(
SΔ(ϕ,Δxh ,T ) = φ

∣∣ X > h
) = P(SΔ(ϕ, T ) = φ) = 1 − pΔ.
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Fig. 9 Sub-events used in the proof of Theorem 2. Gray dashed line shows (a part of) initial tree T . Solid
black line shows (a part of) pruned tree T Δ. We denote by xh a point in T located at distance h from the root,
if it exist

(S3) The event S3 =
{

X ≤ h and degT (x) = 3 and either both subtrees of T descending

from x are pruned away completely (not intersecting T Δ) or {x ∈ T Δ, degT Δ(x) = 3}
}

has probability

P(S3) = 1

2
(1 − e−λh)

(
(1 − pΔ)2 + p2Δ

)

as P
(
degT (x) = 3

) = 1
2 , P(X ≤ h) = 1 − e−λh ,

P
(
both subtrees of T descending from x are pruned away

∣∣degT (x) = 3
)

= (1 − pΔ)2,

and

P
(
both subtrees of T descending from x survive pruning

∣∣degT (x) = 3
)

= p2Δ.

(S4) The event

S4 = {X ≤ h, degT (x) = 3} ∩ {x ∈ T Δ, degT Δ(x) = 2} ∩ {Y ≤ h}
has probability1

P(S4) = 1

2

h∫

0

λe−λt · 2pΔ(1 − pΔ) · F(h − t) dt = pΔ(1 − pΔ)

∞∫

0

λe−λt F(h − t) dt

as P
(
degT (x) = 3

) = 1
2 , P

(
degT Δ(x) = 2

∣∣degT (x) = 3
) = 2pΔ(1 − pΔ), and

P
(
X ≤ h, Y ≤ h

∣∣degT (x) = 3, x ∈ T Δ, degT Δ(x) = 2
) =

h∫

0

λe−λt F(h − t) dt .

Using the probabilities P(S1), P(S2), P(S3), and P(S4) as obtained above, we have two
alternative representations for the probability P(Y ≤ h):

1 Here, degT Δ(x) = 2 means x is neither a junction nor a leaf in T Δ.
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First,

P(Y ≤ h) = (1 − pΔ) + pΔF(h),

and second,

P(Y ≤ h) = P(S1) + P(S2) + P(S3) + P(S4)

= 1

2
(1 − e−λh) + e−λh(1 − pΔ)

+ 1

2
(1 − e−λh)

(
(1 − pΔ)2 + p2Δ

)

+ pΔ(1 − pΔ)

∞∫

0

λe−λt F(h − t) dt .

Equating the two expressions of P(Y ≤ h) and simplifying, we obtain

(1 − pΔ) + pΔF(h) = (1 − pΔ + p2Δ) − e−λh pΔ + pΔ(1 − pΔ)

∞∫

0

λe−λt F(h − t) dt .

Differentiating the above equality we obtain the following equation for the p.d.f. f (t) =
d
dt F(t) of Y :

f (h) = pΔ φλ(h) + (1 − pΔ) φλ ∗ f (h),

where as before φλ denotes the exponential density with parameter λ as in (7). Applying
integral transformation on both sides of the equation, we obtain the characteristic function
f̂ (s) = E

[
eisY

]
of Y ,

f̂ (s) = λpΔ

λpΔ − is
= φ̂λpΔ(s).

Thus, we conclude that Y is an exponential random variable with parameter λpΔ.
Next, let y be the descendent vertex (a junction or a leaf) to the root in T Δ. If T Δ = φ,

let y denote the root. Let

q = P
(
degT Δ(y) = 3

∣∣ SΔ(ϕ, T ) �= φ
)
.

As T Δ is a subset of the metric space T , y is also a point in T which may or may not match
x . Then, P

(
degT Δ(y) = 3

∣∣ y �= x, T Δ �= φ
) = q as in the event conditioned upon, y is

the descendent vertex to x in T Δ. Also,

P
(
y = x | degT (x) = 3

) = P
(
degT Δ(x) = 3 | degT (x) = 3

) = p2Δ

and

P
(
y �= x | degT (x) = 3

) = P
(
degT Δ(x) = 2 | degT (x) = 3

) = 2pΔ(1 − pΔ).

123

Author's personal copy



Dynamical Pruning of Rooted Trees with Applications…

Therefore, since {degT Δ(y) = 3} can be written as the following union of disjoint events,

{degT Δ(y) = 3} = {degT Δ(x) = 3, y = x}
∪ {degT (x) = 3, y �= x, degT Δ(y) = 3},

q · pΔ = P(degT Δ(y) = 3) = P(degT (x) = 3)
[
P
(
degT Δ(x) = 3 | degT (x) = 3

)

+ q P
(
degT Δ(x) = 2 | degT (x) = 3

)]

= 1

2

[
p2Δ + 2pΔ(1 − pΔ)q

]

implying

q = 1

2
pΔ + (1 − pΔ)q,

which in turn yields q = 1
2 .

Finally, if Y ≥ h, let xh denote the unique point of T located at distance h from the root that
survived the pruning. Letting T Δ

xh
:= SΔ(ϕ,Δxh ,T ), we have

(
T Δ

xh

∣∣ Y > h
) d= (

T Δ
∣∣ SΔ(ϕ, T ) �= φ

)
.

Hence, conditioned on SΔ(ϕ, T ) �= φ, the events
{
degT Δ(y) = 3} and

{
Y > h

}
are

independent.
We saw that conditioningonSΔ(ϕ, T ) �= φ, the pruned treeT Δ has the stem length distributed
exponentially with parameter λpΔ. Next, independently of the stem length Y , we have the
pruned tree T Δ branching at y (the stem end point farthest from the root), with probability
q = 1

2 , into two independent subtrees, each distributed2 as {T Δ | T Δ �= φ}. Thus, we
recursively obtain that T Δ is a critical binary Galton–Watson tree with i.i.d. exponential
edge length with parameter λpΔ. ��

Next,wefind an exact formof the survival probability pΔ(λ, ϕ) for three particular choices
of ϕ, thus obtaining EΔ(λ, ϕ).

Theorem 3 In the settings of Theorem 2, we have

(a) If ϕ(T ) equals the total length of T (ϕ = length(T )), then

EΔ(λ, ϕ) = λe−λΔ
[

I0(λΔ) + I1(λΔ)
]
.

(b) If ϕ(T ) equals the height of T (ϕ = height(T )), then

EΔ(λ, ϕ) = 2λ

λΔ + 2
.

(c) If ϕ(T ) + 1 equals the Horton–Strahler order of the tree T , then

EΔ(λ, ϕ) = λ2−�Δ�,

where �Δ� denotes the maximal integer ≤ Δ.

2 Here, y is also a junction vertex in T of which it is only known that both of its descendent subtrees survived
pruning (were not completely erased).
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Proof Part (a). Suppose T
d∼ GW(λ), and let �(x) once again denote the p.d.f. of the total

length length(T ). Then, by Lemma 1,

pΔ = 1 −
Δ∫

0

�(x) dx = 1 −
λΔ∫

0

1

x
e−x I1

(
x
)

dx

= e−λΔ
[

I0(λΔ) + I1(λΔ)
]
, (16)

where for the last equality we used formula 11.3.14 in [2].

Part (b). Suppose T
d∼ GW(λ). Let H(x) once again denote the cumulative distribution

function of the height height(T ). Then by Lemma 2, for any Δ > 0,

pΔ = 1 − H(Δ) = 2

λΔ + 2
.

Part (c). Follows from [33, Corollary 1]. ��
Remark 1 Let EΔ(λ, ϕ) = 2λ

λΔ+2 as in Theorem 3(b). Here E0(λ, ϕ) = λ and EΔ(λ, ϕ) is a
linear-fractional transformation associated with matrix

AΔ =
(
1 0
Δ
2 1

)
.

Since AΔ form a subgroup in SL2(R), the transformations {EΔ}Δ≥0 satisfy the semigroup
property

EΔ1EΔ2 = EΔ1+Δ2

for any pair Δ1,Δ2 ≥ 0.
We notice also that the operator EΔ(λ, ϕ) in part (c) of Theorem 3 satisfies only the discrete

semigroup property for nonnegative integer times. Finally, one can check that EΔ(λ, ϕ) in
part (a) does not satisfy the semigroup property.

5 Continuum 1-D Ballistic Annihilation

As an illuminating application of the generalized dynamical pruning (Sect. 3) and its invari-
ance properties (Sect. 3.4), we consider the dynamics of particles governed by 1-D ballistic
annihilation model, traditionally denoted A+ A → ∅ [18]. This model describes the dynam-
ics of particles on a real line: a particle with Lagrangian coordinate x moves with a constant
velocity v(x) until it collides with another particle, at which moment both particles anni-
hilate, hence the model notation. The annihilation dynamics appears in chemical kinetics
and bimolecular reactions and has received attention in physics and probability literature [7–
9,13,16,18,19,35,41,44]. We introduce here a continuum mechanics formulation of ballistic
annihilation. The dynamics of a ballistic annihilation model with two coalescing sinks is
illustrated in Fig. 1.

Section 5.1 introduces the continuum annihilation model and describes the emergence
of sinks (shocks). The model initial conditions are given by a particle velocity distribution
and particle density on R. Subsequently, we only consider a constant density and initial
velocity distribution with alternating values ±1, or, equivalently, initial piece-wise linear
potential ψ(x, 0) with alternating slopes ±1 (Fig. 2). Section 6 discusses a construction
of the graphical embedding of the shock wave tree into the phase space (x, ψ(x, t)) and
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space-time domain (x, t). Theorems 5, 6 in Sect. 6.4 establish equivalence of the ballistic
annihilation dynamics to the generalized dynamical pruning of a (mass-equipped) shockwave
tree. Sections 6.5 and 6.6 illustrate how the pruning interpretation of annihilation dynamics
facilitates analytical treatment of the model. Specifically, we give a complete description of
the time-advanced potential function ψ(x, t) at any instant t > 0 for the initial potential in a
form of exponential excursion (Theorem 7), and describe the temporal dynamics of a random
sink (Theorems 8, 9).

5.1 Sinks, Massive Particles, ShockWaves

We consider a Lebesgue measurable initial density g(x, 0) = g(x) ≥ 0 of particles on an
interval [a, b] ⊂ R. The initial particle velocities are given by v(x, 0) = v(x). Prior to
collision and subsequent annihilation, a particle located at x0 at time t = 0 moves according
to its initial velocity, so its coordinate x(t) changes as

x(t) = x0 + tv(x0). (17)

When the particle collides with another particle, it annihilates. Accordingly, two particles
with initial coordinates and velocities (x−, v−) and (x+, v+) collide and annihilate at time t
when they meet at the same new position,

x− + tv− = x+ + tv+,

given that neither of the particles annihilated prior to t . In this case, the annihilation time is
given by

t = − x+ − x−
v+ − v−

. (18)

Let g(x, t) and v(x, t) be the Eulerian specification of the particle density and velocity
field, respectively, at coordinate x and time instant t , with a convention that g(x, t) = 0 ⇒
v(x, t) = 0. We define the corresponding potential function

ψ(x, t) = −
∫ x

a
v(y, t)dy, x ∈ [a, b], t ≥ 0,

so that v(x, t) = −∂xψ(x, t). Let ψ(x, 0) = Ψ0(x) be the initial potential.
We call a point σ(t) sink (or shock), if there exist two particles that annihilate at coordinate

σ(t) at time t . Suppose v(x) ∈ C1(R). The equation (18) implies that appearance of a
sink is associated with a negative local minima of v′(x∗); we call such points sink sources.
Specifically, if x∗ is a sink source, then a sink will appear at breaking time t∗ = −1/v′(x∗)
at the location given by

σ(t∗) = x∗ + t∗v(x∗) = x∗ − v(x∗)
v′(x∗)

,

provided there exists a punctured neighborhood

Nδ(x∗) = {x : 0 < |x − x∗| < δ} ⊆ [a, b]
such that none of the particles with the initial coordinates in Nδ(x∗) is annihilated before
time t∗.

Sinks, which originate at sink sources, can move and coalesce (see Fig. 1). We impose the
conservation of mass condition by defining the mass of a sink at time t to be the total mass
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of particles annihilated in the sink between time zero and time t . When sinks coalesce, their
masses add up. It will be convenient to assume that sinks do not disappear in the situations
when they stop accumulating mass (i.e., when the initial velocity field is discontinuous,
as in Sect. 6). In these situations, we assume informally that the sinks are being pushed
by the system particles. Formally, there exists three cases depending on the occupancy of a
neighborhood of σ(t). If there exists an empty neighborhood around the sink coordinate σ(t),
the sink is considered at rest—its coordinate does not change. If only the left neighborhood
of σ(t) is empty, and the right adjacent velocity is negative:

v(σ+, t) := lim
x↓σ(t)

v(x, t) < 0,

the sink at σ(t) moves with velocity v(σ+, t). A similar rule is applied to the case of right
empty neighborhood. A formal description of the sink speed is given below in Eq. (19).
Accordingly, it is convenient to think of the dynamics of massive particles, each of which
corresponds to a sink that can annihilate particles and hence accumulate mass, or be pushed
by the system particles without annihilation and mass accumulation.

We refer to a trajectory of a massive particle as a shock wave. The appearance, motion,
and subsequent coalescence of massive particles can be described by a time oriented shock
wave forest. In particular, the coalescence of massive particles under initial conditions with
a finite number of sink sources is described by a finite forest.

5.2 Basic Constraints on Ballistic Annihilation Dynamics

Suppose x− < x+ are such that v(x−) > v(x+). Assume that density g(x) is positive, and
suppose there is only one sink source x∗ ∈ (x−, x+). In order for x− and x+ to annihilate
each other in the sink originated at x∗ at time t > t∗ we need the following:

(i) Collision at time t :

x− + tv(x−) = x+ + tv(x+).

(ii) The mass between x− and x∗ annihilates the mass between x∗ and x+:

x∗∫

x−

g(x) dx =
x+∫

x∗
g(x) dx .

(iii) Neither x− nor x+ is annihilated before time t .

From conditions (i) and (ii), we obtain the velocity of the sink at time t :

d

dt
σ(t) =

v(x−)
g(x−)

1+tv′(x−)
+ v(x+)

g(x+)
1+tv′(x+)

g(x−)
1+tv′(x−)

+ g(x+)
1+tv′(x+)

. (19)

Indeed, let x− = x−(t) and x+ = x+(t) be the left and the right points annihilating each
other at the location σ(t) of the sink at time t > 0. Then, differentiating the equation in
condition (i), we obtain

d

dt
σ(t) = x ′−(t) + v

(
x−(t)

)+ t x ′−(t)v′(x−(t)
)

(20)

= x ′+(t) + v
(
x+(t)

)+ t x ′+(t)v′(x+(t)
)
, (21)

123

Author's personal copy



Dynamical Pruning of Rooted Trees with Applications…

while differentiating the balance of mass equation in condition (ii), we get

x ′−(t)g
(
x−(t)

)+ x ′+(t)g
(
x+(t)

) = 0. (22)

The above Eqs. (20), (21), and (22) yield (19).
This sink dynamics description is not restricted to v(x) ∈ C1(R), and can be extended to the
case of piecewise smooth v(x).

Example 5 (Two velocities, single sink) Suppose g(x) > 0 for all x ∈ R. Let v(x) ={
v− if x ≤ x∗

v+ if x > x∗ , where the constants v− > v+ and x∗ are given. Naturally, x∗ is the only

sink source and the only sink appears at the sink source at time t = 0. Moreover, analogously
to (19), one can derive the dynamics of the sink at time t :

d

dt
σ(t) = v−g(x−) + v+g(x+)

g(x−) + g(x+)
, (23)

where x− < x∗ is the only root of

Gt (y) =
y+t(v−−v+)∫

x∗
g(x) dx −

x∗∫

y

g(x) dx,

and x+ = x− + t(v− − v+). Note that Gt (x) is continuous and strictly increasing, and that
Gt (x∗) > 0 > Gt

(
x∗ − t(v− − v+)

)
.

The dynamics of ballistic annihilation, either in discrete or continuum versions, can be
quite intricate and is lacking a general description. The discrete 1-D ballistic annihilation
model with two possible velocities ±v was considered in [7,9,13,18,19]; the three velocity
case (−1, 0, and +1) appeared in [16,44]. The existing analyses focus on the evolution
of selected statistics under particular initial conditions. In the following section, we give a
complete description of the continuum annihilation dynamics in case of two-valued initial
velocity and constant particle density.

6 Continuum 1-D Ballistic Annihilation: Piece-Wise Linear Potential
with Unit Slopes

Here we study a continuum version of the 1-D ballistic annihilation with two possible initial
velocities and constant initial density, i.e. v(x) = ±v and g(x, 0) ≡ g(x) ≡ g0 for x ∈ [a, b].
Since we can scale both space and time, without loss of generality we let v(x) = ±1 and
g(x) ≡ 1.

Formally, we consider the space Eex of positive piece-wise linear continuous excursions
with alternating slopes ±1 and finite number of segments. We write Eex([a, b]) for the
restriction of this space on the real interval [a, b]. We consider an initial potential ψ(x, 0) =
Ψ0(x) such that −ψ(x, 0) ∈ Eex([a, b]); see Fig. 2. This space bears a lot of symmetries that
facilitate our analysis.

The dynamics of a system with a simple unit slope potential is illustrated in Fig. 10. Prior
to collision, the particlesmove at unit speed either to the left or to the right, so their trajectories
in the (x, t) space are given by lines with slope ±1 (Fig. 10, top panel, gray lines). The local
minima of the potential Ψ0(x) correspond to the points whose right neighborhood moves to
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Fig. 10 Shock wave tree in a model with a unit slope potential: an illustration. Top panel: Space-time dynam-
ics of the system. Trajectories of particles are illustrated by gray lines. The trajectory of massive particles
(coalescing sinks) is shown by blue line—this is the graphical representation G(x,t)(Ψ0) of the shock wave
tree S(Ψ0). Notice the appearance of empty regions (zero particle density) in the space-time domain. Bottom
panel: Initial unit slope potential Ψ0(x) with three local minima (black line) and a graphical representation
G(x,ψ)(Ψ0) of the shock wave tree (blue line) in the phase space (x, ψ(x, t)) (Color figure online)

the left and left neighborhood moves to the right with unit speed, hence immediately creating
a sink. Accordingly, the sinks appear at t = 0 at the local minima of the potential; and those
are the only sinks of the system. The sinks move and merge to create a shock wave tree,
shown in blue in Fig. 10.

The two white (unshaded) rectangles in the top panel of Fig. 10 correspond to the regions
of zero particle density. The segments of the shock wave (blue) that bound these rectangles
correspond to the sinks that are being pushed by the system particles, with no annihilation and
mass accumulation. The parts of the shock wave that fall within the shaded region correspond
to the sinks that annihilate particles and accumulate mass.

Observe that the domain [a, b] is partitioned into non-overlapping subintervals with
boundaries x j such that the initial particle velocity assumes alternating values of ±1 within
each interval, with boundary values v(a, 0) = v(a) = 1 and v(b, 0) = v(b) = −1. Because
of the choice of potential Ψ0(x), we have

b∫

a

v(x) dx = Ψ0(b) − Ψ0(a) = 0,

i.e. the total length of the subintervals with the initial velocity −1 equals the total length of
the subintervals with the initial velocity 1. For a finite interval [a, b], there exists a finite time
tmax = (b − a)/2 at which all particles aggregate into a single sink of mass m = (b − a) =
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2 tmax; see discussion below. We assume that the density of particles vanishes outside of
[a, b] and only consider the solution on the time interval [0, tmax].

6.1 ShockWaves

For our fixed choice of the initial particle density g(x) ≡ 1, themodel dynamics is completely
determined by the potentialΨ0(x).Wewill be particularly interested in the dynamics of shock
waves. The trajectories of massive particles can be described by a set (Fig. 10, top panel)

G(x,t)(Ψ0) =
{(

x, t
) ∈ R

2 : ∃ a massive particle at (x, t)
}

in the system space-time domain (x, t) : x ∈ [a, b], t ∈ [0, (b − a)/2
]
. For any two points

(xi , ti ) ∈ G(x,t)(Ψ0), i = 1, 2, connected by a self-avoiding path γ within G(x,t)(Ψ0), we
define the distance between them as

d(x,t)((x1, t1), (x2, t2)
) =

∫

γ

|dt | = 2t∗ − t1 − t2, (24)

where

t∗ := max{t : (x, t) ∈ γ }.
Equivalently, the distance between twopointswithin anuninterrupted runof amassive particle
(i.e., without merging with another particle) is defined as their nonnegative time increment;
this induces the distance d(x,t) on G(x,t)(Ψ0).

Similarly, the trajectories of the massive particles can be described by a set (Fig. 10,
bottom panel)

G(x,ψ)(Ψ0) =
{(

x, ψ(x, t)
) ∈ R

2 : ∃ a massive particle at (x, t)
}

in the system phase space (x, ψ(x, t)) : x ∈ [a, b], t ∈ [0, (b − a)/2
]
. For any two points

(xi , ψi ) ∈ G(x,ψ)(Ψ0), i = 1, 2, connected by a self-avoiding path γ within G(x,ψ)(Ψ0), we
define the distance between them as

d(x,ψ)
(
(x1, ψ1), (x2, ψ2)

) =
∫

γ

(|dt | + |dx |). (25)

Equivalently, one can consider the L1 distance between the points along path γ ; this induces
the distance d(x,ψ) on G(x,ψ)(Ψ0).

6.2 Tree Structure of ShockWaves

Here we show that the shock waves G(x,ψ) and G(x,t) in our model have a finite binary
tree structure. Multiple useful symmetries of these trees are summarized in Lemma 5. The
general construction is presented in Sect. 6.2.3; it is based on aW-shaped potential discussed
in Sect. 6.2.2. To develop intuition and cover all possible cases, we begin with a simple
V-shaped potential.

123

Author's personal copy



Y. Kovchegov, I. Zaliapin

Fig. 11 A V-shaped potential on interval [a, b]. Bottom: The potential Ψ0 (black line) and the shock wave in
the phase space (x, ψ) (blue segment). Top: The space-time portrait. The system occupies a triangular (shaded)
region in the (x, t) space. Thin hatching illustrates the trajectories of regular particles. Blue vertical segment
show the trajectory of the massive particle. The length of this segment in both panels is v1 = (b −a)/2 (Color
figure online)

6.2.1 V-Shaped Potential

Let x1 = c = (a + b)/2 be the center of the segment [a, b]. Consider the simplest V-shaped
potential that consists of a negative segment on [a, c] and a positive segment on [c, b]; see
Fig. 11. In this case, there exists a single massive particle that originates at t = 0 at the
point (c, Ψ0(c)). In x-space, it remains at rest and accumulates mass at rate 2 during the time
interval of duration (b − a)/2, which reflects accumulation of regular particles that merge
into the massive particle from left and right. After this, the mass of the particle is (b − a),
which reflects complete accumulation of all regular particles from the interval [a, b].

In the phase space (Fig. 11, bottom panel), the trajectory of the massive particle cor-
responds to a vertical segment of length v1 = (b − a)/2 between points (x1, Ψ0(x1)) and
(x1, Ψ0(x1)+v1). The trajectory of each regular particle is a horizontal line from the particle’s
initial position (x, ψ(x, 0)) to the point of merging with the massive particle at (x1, ψ(x, 0)).

In the space-time domain (Fig. 11, top panel) the trajectory of the massive particle is a
vertical segment between points (x1, 0) and (x1, v1). The trajectories of regular particles,
each of which moves with its initial velocity until merging with the massive particle, are
shown by thin diagonal lines.

To summarize, in the case of a V-shaped potential, each of the shock waves G(x,ψ) and
G(x,t) is a vertical interval of length v1 (blue lines in Fig. 11). The distances d(x,ψ) of (25)
and d(x,t) of (24) coincide with the Lebesgue measure on these intervals.

123

Author's personal copy



Dynamical Pruning of Rooted Trees with Applications…

Fig. 12 AW-shaped potential. Bottom: The potential Ψ0 (solid black) and the shock in the phase space (x, ψ)

(blue). Top: The space-time portrait. The system occupies a shaded region in the (x, t) space, bounded by a
triangle that corresponds to the V-shaped potential on the interval [a, b], as in Fig. 11. Notice the appearance
of an empty rectangular region in the space-time portrait that corresponds to (x, t) locations with no particles.
Thin hatching illustrates the trajectories of regular particles. Blue lines show the trajectories ofmassive particles
(Color figure online)

6.2.2 W-Shaped Potential

Consider now a negative excursion on [a, b] with exactly two local minima at x1, x3 and the
only local maxima at x2, with a < x1 < x2 < x3 < b, see Fig. 12. There exist two massive
particles that originate at t = 0 at points x1 and x3. The massive particle at x1 remains at
rest and accumulates mass at rate 2 during time interval of duration v1 = Ψ0(x2) − Ψ0(x1).
At instant t = v1 the right neighborhood of the massive particle at x1 becomes empty, and it
starts moving at unit speed to the right. Similarly, the massive particle at x3 remains at rest
and accumulates mass at rate 2 during time interval of duration v3 = Ψ0(x2) − Ψ0(x3). At
instant t = v3 the left neighborhood of the massive particle at x3 becomes empty, and it starts
moving at unit speed to the left. The two massive particles move toward each other until they
merge to form a new massive particle of mass 2(v1 + v3). We denote by hi , i = 1, 3 the
durations of these respective movements. Since both right and left neighborhoods of the new
massive particle are occupied by regular particles, the particle remains at rest for some time.

The following lemma summarizes this discussion and describes the shock trajectories
G(x,ψ)(Ψ0) and G(x,t)(Ψ0). This is the basic element for constructing a general potential
solution in Sect. 6.2.3.

Lemma 3 (Shock tree of a W-shaped potential) For a W-shaped potential described above
(and illustrated in Fig. 12) we have:
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(a) The shock trajectory G(x,ψ)(Ψ0) in the phase space has the bracket tree shape that
consists of two leaves and a root edge (Fig. 12, bottom panel). Each leaf corresponds
to the dynamics of one of the two initial massive particles; the root edge corresponds
to the dynamics of the final massive particle. Each leaf consists of a vertical segment
between points (xi , Ψ0(xi )) and (xi , Ψ0(x2)), and a horizontal segment between points
(xi , Ψ0(x2)) and (c, Ψ0(x2)), for i = 1, 3. The stem consists of a vertical segment between
points (c, Ψ0(x2)) and (c, Ψ0(a)). Here c = (a +b)/2 is the center of the interval [a, b].

(b) In the space-time domain (x, t), the system occupies a cone C that has the shape of a right
triangle with the hypotenuse on the interval {x, t} = {[a, b], 0} and the legs merging at
the point (c, c). The shock trajectory G(x,t)(Ψ0) forms an inverted Y-shaped tree shown
in Fig. 12 (top panel) that consists of two leaves and a stem. Each leaf corresponds to
the dynamics of one of the two initial massive particles; the stem corresponds to the
dynamics of the final massive particle. Each leaf consists of a vertical segment between
points (xi , 0) and (xi , vi ), and a slanted segment between points (xi , vi ) and (c, v1+v3),
for i = 1, 3. The stem consists of a vertical segment between points (c, v1 + v3) and
(c, c). There exists a rectangular empty region (no particles) with vertices at the points
(clock-wise from the bottom point): (x2, 0), (x1, v1), (c, v1 + v3), and (x3, v3).

(c) The regular particles move in the direction of their initial velocities until they merge with
a massive particle. A regular particle x in the interval [x1 − v1, x1 + v1 = x2) merges
with the massive particle at point x1 at time instant t = |x1 − x |. A regular particle x in
the interval (x3 − v3 = x2, x3 + v3] merges with the massive particle at point x3 at time
instant t = |x3 − x |. A regular particle x in the intervals [a, x1 − v1) and (x3 + v3, b]
merges with the massive particle at point (a + b)/2 at time instant t = |(a + b)/2− x |.
The regular particle at x2 merges the massive particle at x1 (x3) if the potential is left
(right) continuous at time instant t = x2 − x1 (t = x3 − x2).

(d) The metric spaces
(
G(x,t)(Ψ0), d(x,t)

)
and

(
G(x,ψ)(Ψ0), d(x,ψ)

)
are isometric binary

trees.

Proof The statements follow from model definition and elementary geometric properties of
a W-shaped potential illustrated in Fig. 12. ��

Next, wemake a symmetry observation, which helps to extend our geometric construction
of the shock tree to an arbitrary potential. We define the basin B2 for the local maximum at
x2 as the shortest interval that contains x2 and supports a non-positive excursion in Ψ0(x).
Formally, B2 = [x left2 , x right2 ], where

x right2 = inf{x : x > x2 and Ψ0(x) > Ψ (x2)},
x left2 = sup{x : x < x2 and Ψ0(x) > Ψ (x2)}.

The basin length is denoted by |B2| = x right2 − x left2 .

Lemma 4 (Symmetry lemma) Let vi , hi for i = 1, 3 be the lengths of the vertical and
horizontal segments, respectively, of the leaves of the shock tree for a W-shaped potential:

vi = Ψ0(x2) − Ψ0(xi ), hi = |(a + b)/2 − xi |.
Then

h1 = v3, h3 = v1

and

vi + hi = |B2|/2 = (b − a)/2 − (Ψ0(a) − Ψ0(x2)).
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Proof By elementary geometric properties of the shock wave tree for a W-shaped potential
illustrated in Fig. 12. ��

Lemma 4 implies that after instant t = |B2|/2 when the massive particles that originate
at x1 and x3 merge, the process dynamics is indistinguishable from that of the V-shaped
potential on [a, b]. This loss of memory property is used below to construct the shock tree in
a general case, using a recursive construction by the number of local maxima of the potential.

6.2.3 General Potential

This section considers a potential Ψ0(x) ≡ Ψ1(x) with −Ψ1(x) ∈ Eex([a, b]) and such that
Ψ0(x) has distinct values of the local maxima.

We begin by extending the basin definition of Sect. 6.2.2. Specifically, for each local
extremum x j of Ψ0(x), we define its basin B j as the shortest interval that contains x j and

supports a non-positive excursion of Ψ0(x). Formally, B j = [x leftj , x rightj ], where
x rightj = inf

{
x : x > x j and Ψ0(x) > Ψ (x j )

}
,

x leftj = sup
{

x : x < x j and Ψ0(x) > Ψ (x j )
}
.

The basin’s length is
∣∣B j
∣∣ = x rightj − x leftj . Point c j = (x rightj + x leftj )/2 denotes the center of

the basin B j . Additionally, we let

v j = Ψ0(xparent( j)) − Ψ0(x j ) and h j = ∣∣Bsibling( j)
∣∣/2.

We observe that the basin B j for a local minimum x j coincides with its coordinate: B j =
{x j = x leftj = x rightj }.

The shock tree for the V-shaped potential was constructed in Sect. 6.2.1. If the potential
is not V-shaped, it has n ≥ 1 local maxima. We assume that the values of the local maxima
are distinct. Consider the basins that correspond to the local maxima of Ψ1(x) and re-index
them according to their lengths, from shortest to longest:

|B1| < |B2| < · · · < |Bn |.
Let ti = |Bi |/2. For each basin Bi we define the corresponding space-time cone Ci that has
the shape of a right triangle with hypotenuse {x, t} = {Bi , 0} and legs merging at the point
(x lefti + ti , ti ); see Fig. 14.

It is readily seen that the shortest basin B1 necessarily supports a W-shaped potential. We
construct the shock tree for the regular particles within the space interval B1 during the time
interval [0, t1], using the W-shaped potential construction of Lemma 3. Hence, we describe
the system dynamics in the space-time cone C1.

Consider now the unfolded potential Ψ2(x) that coincides with Ψ1(x) outside of B1 and
has a V-shaped form on B1; Fig. 13. (This potential is obtained by “unfolding” the inner local
maximum of the W-shaped potential within the basin B1, hence its name.) By construction,
and using Lemma 3, the trees that correspond to the potentials Ψ1 and Ψ2 coincide outside
of the cone C1 in the space-time domain. The potential Ψ2(x) has n − 1 local maxima. Its
shortest basin is B2; it necessarily corresponds to a W-shaped potential within Ψ2(x). We
use Ψ2(x) to construct the space-time tree on C2, using the W-shaped potential algorithm of
Lemma 3. The resulting tree is only considered within the space-time subregion C2 \ C1. The
union of this tree and the tree constructed in the initial step within C1 results in the tree within
C1 ∪ C2.
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Fig. 13 Potential unfolding: an illustration. The potential Ψ2(x) is an unfolding of Ψ1(x), and Ψ3(x) is an
unfolding of Ψ2(x). The shock tree in the phase space is shown (blue segments) next to the initial potential
Ψ1(x). The potentials Ψ2,3(x) are arbitrarily shifted in vertical direction for visual convenience (Color figure
online)

Consider now a set of unfolded potentials Ψi (x), i = 3, . . . , n, such that Ψi (x) coincides
withΨi−1(x) on [a, b]\Bi and forms a V-shaped negative excursion on Bi−1, see Fig. 13. By
construction, the shortest basinwithin everyΨi (x) isBi , and it supports aW-shaped potential.
We apply theW-shaped potential algorithm to each potentialΨi (x)within the basinBi , hence
consecutively extending the shock tree construction to the space-time subsets

i⋃

j=1

C j .

At instant tn there exists a single massive particle within a V-shaped potential Ψn(x) on
[a, b], which is treated according to the V-shaped potential construction. This completes the
space-time tree construction.

Figure 14 illustrates the above process for a potential with 4 local maxima. The space-time
cones Ci , i = 1, . . . , 5 are labeled in the figure. Here, the largest cone C5 corresponds to the
entire space-time system’s domain.

Observe that the graphical shock trees G(x,ψ) and G(x,t) in the phase space and in the
space-time domain have the same combinatorial structure and planar embedding, coinciding
with that of S(Ψ0) (recall that embedding only involves ordering between the offspring of
the same parent, and is different from a particular graphical representation of a tree). The
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Fig. 14 Iterative solution construction: an illustration for a potential Ψ0(x) (bottom panel) with four local
maxima. Top: Space-time cones C1, . . . ,C4 that correspond to the basins B1, . . . ,B4. Blue segments show
the shock tree. The cone C5 corresponds to the V-shaped potential on the whole space interval (Color figure
online)

graphical trees become metric spaces, when equipped with the distances d(x,ψ) of (25) and
d(x,t) of (24), respectively.

The following statement summarizes the correspondence between the dynamics of the
sinks and the graphical tree G(x,ψ)(Ψ0).

Lemma 5 (Shock tree) Consider function Ψ0(x) such that −Ψ0(x) ∈ Eex and Ψ0(x) has
distinct values of local maxima. Let G ≡ G(x,ψ)(Ψ0) be the graphical shock wave of a
continuum annihilation dynamics with unit density g(x) ≡ 1 and initial potential Ψ0(x).
Then metric space

(
G(x,ψ)(Ψ0), d(x,ψ)

)
is isometric to a finite binary tree with edge lengths

from BL|
plane. In addition, the following statements hold:

(a) There exists a one-to-one correspondence between points z ∈ G and space-time locations
(xz, tz) of sinks. In particular, there exists a one-to-one correspondence between the sinks
at instant t = 0 and the leaves ofG, and a one-to-one correspondence between the instants
when two sink merge and the internal vertices of G.

(b) Every sink at any time can either be at rest and accumulate mass at rate 2, or move with a
unit speed with no mass accumulation. A point on any vertical segment of G corresponds
to a sink at rest. A point on any horizontal segment of G corresponds to a sink in motion.

(c) Suppose a point z ∈ G corresponds to a sink with mass mz at location (xz, tz). Then tz
equals the length d(x,ψ) from z to any descendant leaf withinG. The mass mz ≤ 2tz equals
double the total length of the vertical segments of the subtree Δz,G ⊂ G descendant to z.
Furthermore, mz = 2 tz if and only if z is located on a vertical segment of G.

(d) The length h j of a horizontal segment equals the total length of the vertical segments
within its sibling subtree. (Here, the two complete descendant subtrees of G rooted at the
same internal vertex are called sibling subtrees.) In other words, the time spent by a sink
in uninterrupted motion prior to a collision with another sink equals half the mass of the
sink with which it collides.
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Proof Items (a), (b) follow from the constructions of in Sects. 6.2.1, 6.2.2 and 6.2.3. Items(c),
(d) follow from recursive application of Lemma 4 to unfolding potentials used in the con-
struction. ��
Example 6 As an example of Lemma 5(d), consider the model of Fig. 15 that has two pairs
of sibling trees. The first pair is formed by the complete descendant subtrees of vertex 2.
Here, h1 = v3 and h3 = v1. The second pair is formed by the complete descendant subtrees
of vertex 4. Here, h2 = v5 and h5 = v1 + v2 + v3.

Remark 1 A statement analogous to that of Lemma 5 holds for the graphical shock wave
G = G(x,t)(Ψ0) and the respective metric space

(
G(x,t)(Ψ0), d(x,t)

)
in the space-time domain.

Specifically, item (a) holds verbatim. In item (b) one needs to replace “horizontal segment”
with “slanted segment”. In item (c) one needs to replace d(x,ψ) with d(x,t). In item (d) one
needs to replace “The length h j of a horizontal segment…” with “The height h j of a slanted
segment…”.

Lemma 6 (Shock wave tree) Suppose that −Ψ0 ∈ Eex and the local maxima of Ψ0 have
distinct values. Then the metric spaces

(
G(x,t)(Ψ0), d(x,t)

)
and

(
G(x,ψ)(Ψ0), d(x,ψ)

)
are finite

binary trees. Furthermore, they are isomeric to a unique binary tree from BL|
plane that we

denote by S(Ψ0).

Proof The statement follows from Lemma 5 and Remark 1. In particular, the uniqueness is
established by noticing that a tree from BL|

plane is uniquely specified by the parent-offspring
relations among vertices and the edge lengths vi + hi . ��
We refer to the trees of Lemma 6 as graphical trees G(x,t)(Ψ0) and G(x,ψ)(Ψ0); they are two
alternative graphical representations of the tree S(Ψ0) that we refer to as the shock wave tree.

6.3 Embedding of ShockWave Tree in theModel Potential

With our particular choice of the initial potential (a negative excursion with unit slopes), the
combinatorial structure and the planar embedding of the shock wave tree coincide with that
of the level set tree T = level

( − Ψ0
)
of the initial potential, as we state in the following

theorem.

Theorem 4 (Shock wave is a level set tree) Suppose g(x) ≡ 1 and the initial potential Ψ0(x)

is such that −Ψ0(x) ∈ Eex and Ψ0(x) has distinct values of local maxima. Then

p- shape
(
level (−Ψ0)

) = p- shape
(
S(Ψ0)

)
.

Proof Considering the level set tree of a negative potential reflects the fact that the level set
tree is constructed top to bottom (leaves correspond to local maxima), and the shock wave
tree is constructed bottom to top (leave correspond to local minima).

Observe that the statement is true for a V-shaped potential (see Sect. 6.2.1, Fig. 11), whose
level set tree is comprised by a single edge, and aW-shaped potential (see Sect. 6.2.2, Fig. 12),
whose level set tree is a Y-shaped planted binary tree with two leaves.

The general statement follows from the recursive shock wave tree construction presented
in Sect. 6.2.3 and the definition of the level set tree in Sect. 2.2. Specifically, we start with a
Y-shaped tree that corresponds to a W-shaped potential within the cone C1 (see Sect. 6.2.3,
Fig. 14 for definition of the cone). The k-th unfolding of the initial potential Ψ0(x) produces
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Fig. 15 Shock tree for a piece-wise linear potential with two local maxima. Top: The shock tree in space-time
domain (blue). Hatching illustrates motion of regular particles. There exist two empty rectangular areas, each
corresponding to one of the local maxima. The panel illustrates indexing of the tree vertices. Bottom: Potential
Ψ0(x) (black) and the shock tree in the phase space (blue). The panel illustrates the labeling of vertical (v j )
and horizontal (h j ) segments of the tree (Color figure online)

a shock wave within the cone Ck+1. This is a planted binary tree with k + 2 leaves. This
tree is obtained by replacing one of the leaves of the Y-shaped tree that corresponds to an
unfoldedW-shaped potential within the cone Ck+1 with the tree with k +1 leaves constructed
within the cone Ck . The statement of the theorem now follows from examining the level set
trees for each W-shaped potential and combining them according to the unfolding process of
Sect. 6.2.3. ��
Theorem 4 implies that there is one-to-one correspondence between internal local maxima
of Ψ0(x) and internal non-root vertices of S(Ψ0). There is also a one-to-one correspondence
between local minima and the leaves. We label the tree vertices with the indices j that
correspond to the enumeration of the local extrema x j of Ψ0(x); see Fig. 15. We write
parent(i) for the index of the parent vertex to vertex i ; right(i) and left(i) for the indices
of the right and the left offsprings of an internal vertex i ; and sibling(i) for the index of the
unique vertex that has the same parent as vertex i .

We are now ready to describe themetric structure of the shock tree S(Ψ0) and a constructive
embedding G(x,ψ)(Ψ0) of the tree S(Ψ0) into the system’s phase space (and hence into the
potential function).

Metric tree structure The length l j of the parental edge of a non-root vertex j within
S(Ψ0) is given by l j = v j + h j .

Graphical shock tree in the phase spaceThe treeG(x,ψ)(Ψ0) is the union of the following
vertical and horizontal segments:
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Fig. 16 Graphical representation G(x,ψ)(Ψ0) (blue) of the shock wave tree S(Ψ0) for initial potential Ψ0(x)

with nine local minima (black). There are nine sinks that correspond to the leaves of the tree. The trajectory
of each sink can be traced by going from the corresponding leaf to the root of the tree (Color figure online)

(v) For every local extremum x j of Ψ0(x) there exists a vertical segment from (c j , Ψ0(x j ))

to (c j , Ψ0(x j ) + v j ).
(h) For every localmaximum x j ofΨ0(x) there exists a horizontal segment of length hleft( j)+

hright( j) from (cleft( j), Ψ0(x j )) to (cright( j), Ψ0(x j )).

Figure 15 shows the graphical shock trees G(x,ψ) and G(x,t) for an initial potential with
two local maxima and three local minima, and illustrates the labeling of vertical (v j ) and
horizontal (h j ) segments of the tree. Figure 16 shows an example of the graphical tree G(x,ψ)

for an initial potential with nine local minima (and, hence, with nine initial sinks).
Consider a tree V(Ψ0) ∈ BL|

plane that has the same planar combinatorial structure as
S(Ψ0), and the length of the parental edge of vertex j is given by l j = v j . Informally, this is
a tree that consists of the vertical segments of the graphical tree G(x,ψ)(Ψ0) (Fig. 10, bottom).
We have the following corollary of Theorem 4.

Corollary 3 Suppose g(x) ≡ 1 and potential Ψ0(x) is such that −Ψ0(x) ∈ Eex and Ψ0(x)

has distinct values of local maxima. Then

V(Ψ0) = level (−Ψ0) .

Proof Follows from construction of the shock wave tree in Sect. 6.2.3 and construction of
the level set tree in Sect. 2.2. Considering a negative potential reflects the fact that the level
set tree is constructed top to bottom (leaves correspond to local maxima), and the shock tree
is constructed bottom to top (leave correspond to local minima). ��

6.4 Ballistic Annihilation as Generalized Pruning

This section shows that the dynamics of continuum ballistic annihilation with constant initial
density and unit-slope potential is equivalent to the generalized dynamical pruning of either
the shock wave tree (Theorem 5) or the level set tree of the potential (Theorem 6).

Suppose a tree T ∈ BL|
plane has a particular graphical representation GT ∈ R

2 imple-
mented by a bijective isometry f : T → GT that maps the root of T into the root of GT . We
extend the notion of the generalized dynamical pruning St (ϕ,GT ) for the graphical tree GT

by considering the f -image of St (ϕ, T ):

St (ϕ,GT ) = f
(
St (ϕ, T )

)
.

Consider a natural isometry (Lemma 6) between the shock wave tree S(Ψ0) and either of
the graphical shock trees, G(x,t)(Ψ0) (in the space-time domain) or G(x,ψ)(Ψ0) (in the phase
space). The next theorem formalizes an observation that the dynamics of sinks is described
by the continuous pruning (Sect. 1) of the shock wave tree.
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Theorem 5 (Annihilation pruning I) Suppose g(x) ≡ 1, and the initial potential Ψ0(x) is
such that −Ψ0(x) ∈ Eex and Ψ0(x) has distinct values of local maxima. Then, the dynamics
of sinks is described by the generalized dynamical pruning St (ϕ,G) of either the graphical
tree G = G(x,ψ)(Ψ0) (in the phase space) or G = G(x,t)(Ψ0) (in the space-time domain), with
the pruning function ϕ(T ) = height(T ). Specifically, the locations of sinks at any instant
t ∈ [0, tmax) coincide with the location of the leaves of the pruned tree St (ϕ,G).

Proof By definition, the trajectories of the sinks coincide with the graphical tree G (in either
phase space or space-time). Furthermore, item (c) of Lemma 5 in Sect. 6.2.3 implies that
every sink travels distance t along the tree (from a leaf toward the root, according to the cor-
responding tree metric d(x,ψ) or d(x,t)) by time t . This is equivalent to the pruning statement
of the current theorem. ��
Theorem 5 only refers to the dynamics of the sinks; it is, however, intuitively clear that the
entire potential ψ(x, t) at any given t > 0 can be uniquely reconstructed from either of the
pruned graphical trees, G(x,t)(Ψ0) or G(x,ψ)(Ψ0). Because of the multiple symmetries, the
graphical trees possess significant redundant information.

Next, we show that the reduced tree V(Ψ0) (Corollary 3) equipped with information about
the sinks provides a minimal description sufficient for reconstructing the entire continuum
annihilation dynamics.

Lemma 7 Suppose g(x) ≡ 1, and the initial potential Ψ0(x) is such that −Ψ0(x) ∈ Eex and
Ψ0(x) has distinct values of local maxima. Then,

level(ψ(x, t)) = St (length,V(Ψ0)).

Proof The statement is a part of Theorem 6 proved below. ��
Lemma 7 states that the level set tree (i.e., the sequence of the local extreme values) of
ψ(x, t) is uniquely reconstructed from the pruned tree V(Ψ0). This, however, is not sufficient
to reconstruct the entire time-advanced potential, which has plateaus corresponding to the
intervals of zero density (recall the empty regions in the top panels of Fig. 10). The information
about such plateaus is lost in the pruned tree. It happens that it suffices to remember “the
size” of the pruned out parts of the tree in order to completely reconstruct the annihilation
dynamics from V(Ψ0). Specifically, we store the value ϕ(τ) for each subtree τ that has been
pruned out. These values are stored in the cuts—the points where the pruned subtrees were
attached to the initial tree; see Fig. 17a. The cuts is a union of the leaves of the pruned tree and
the vertices of the initial tree that became edge points in the pruned tree. A formal definition
is given below.

Definition 3 (Cuts) The set Dt (ϕ, T ) of cuts in a pruned tree St (ϕ, T ) is defined as the
boundary of the pruned part of the tree

Dt (ϕ, T ) = ∂{x ∈ T : ϕ(Δx,T ) < t}.
We now define an extension S̃t (ϕ, T ) of the generalized dynamical pruning that preserves

the sizes of pruned subtrees. Such pruning starts with a tree from BL|
plane and results in a

tree from the space of mass-equipped trees, denoted B̃L|
plane. The pruning S̃t (ϕ, T ) of a tree

T ∈ BL|
plane is a tree from B̃L|

plane, whose projection to BL|
plane coincides with St (ϕ, T ).

In addition, the tree is equipped with massive points placed at the cuts. Each massive point
corresponds to a pruned out subtree τ of T , with mass equal ϕ(τ). If a cut is the boundary
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(a) (b)

Fig. 17 Cuts and massive points: an illustration. a Pruned tree St (length, T ) (solid black) with the set of
cuts (red circles). The pruned parts of the initial tree T are shown in gray. Here, we prune by length; the cuts
a,d correspond to Stage IV of Fig. 8. The cuts a and d are placed at vertices of T that became leaves within
St (length, T ). The cuts b and e are placed at the leaves of the pruned tree. The cuts c and f are placed at
vertices of T that became non-vertex points within St (length, T ). b Massive points (red circles) placed at
the cuts. Each of the cuts a and d hosts two oriented massive points. Each of the cuts b and e hosts a single
unoriented massive point. Each of the cuts c and f hosts a single oriented massive point. The circle size is
proportional to the mass (Color figure online)

for two pruned subtrees (Fig. 17a, cuts a,d), then it hosts two oriented masses. Such cuts are
typical in prunings that do not have the semigroup property (see Fig. 8, Stage IV). Figure 17b
illustrates mass-equipped pruning S̃t (ϕ, T ) with pruning function ϕ = length.

Next, we describe how to construct the time-advanced potential ψT ,t (x) for a given t ∈
[0, tmax] and all x ∈ [a, b] from a pruned mass-equipped tree T = S̃t (length,V(Ψ0)).
Theorem 6 then shows that this reconstructed potential coincides with the time-advances
potential of the annihilation dynamics.

Construction 1 (Tree → potential) Suppose T = S̃t (length,V(Ψ0)). The corresponding
potential ψT ,t (x), with −ψT ,t (x) ∈ Eex, is constructed in the following steps:

(1) Construct the Harris path HT (x) for the projection of T to BL|
plane (i.e., disregarding

masses), and consider the negative excursion −HT (x).
(2) At every local minimum of −HT (x) that corresponds to a double mass (mL, mR), insert

a horizontal plateau of length

ε = 2(mL + mR − t),

as illustrated in Fig. 18, Stage 3.
(3) At every monotone point of −HT (x) that corresponds to an internal mass m, insert a

horizontal plateau of length 2m (Fig. 18, Stage 2).
(4) At every internal local maxima of −HT (x), insert a horizontal plateau of length 2t

(Fig. 18, Stage 1).

The following theorem establishes the equivalence of the continuum annihilation dynam-
ics and mass-equipped generalized dynamical pruning with respect to the tree length. In
particular, it includes the statement of Lemma 7.
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Fig. 18 Four generic stages in the ballistic annihilation dynamics of aW-shaped potential (left), and respective
mass-equipped trees (right). The lengths v1 and v3 of the two vertical leaf segments are assigned as illustrated
in the Stage 4 (see also Fig. 15). Left: Potential ψ(x, t) is shown in solid black. Each plateau (dashed gray)
corresponds to an interval of zero density. The graphical shock tree G(x,ψ)(Ψ0) (blue) and sinks (black circles)
are shown for visual convenience. Right: Mass-equipped trees. Segment lengths are marked in black, point
masses are indicated in gray. Notice progressive increase of the point masses from Stage 1 to 4. The Stages
1 to 4 refer to time instants t1 < t2 < t3 < t4. Here v3 < v1, v3 > t1, v3 < t2 < v1, v1 < t3, and
t3 < v1 + v3 < t4 (Color figure online)

123

Author's personal copy



Y. Kovchegov, I. Zaliapin

Theorem 6 (Annihilation pruning II)Suppose g(x) ≡ 1and the initial potentialΨ0(x) is such
that −Ψ0(x) ∈ Eex and Ψ0(x) has distinct values of local maxima. Then, for any t ∈ [0, tmax],
the time-advances potential ψ(x, t) is uniquely reconstructed (by Construction 1) from the
pruned tree T = S̃t (length,V(Ψ0)). That is, ψ(x, t) ≡ ψT ,t for all x ∈ [a, b].
Proof The validity of the statement (potential reconstruction) is verified recursively, follow-
ing the unfolding process of Sect. 6.2.3. Specifically, we start with a W-shaped potential for
which the statement is directly verified in each of the four generic stages shown in Fig. 18.
When a W-shaped potential is completely pruned, its domain is an empty interval that corre-
sponds to an empty tree consisting of the root with a single mass equal to the interval length
(end of Stage 4 in Fig. 18). Hence, the mass-equipped pruning process after that time is
equivalent to that of an unfolded potential (where we replace the W-shaped potential with a
V-shaped potential). This leads to the statement of the theorem. ��

Inversely, the mass-equipped tree S̃t (length,V(Ψ0)) can be uniquely reconstructed from
the evolution of the time-advanced potential ψ(x, s) during s ∈ [0, t]. This is done using the
following construction.

Construction 2 (Potential → tree) Suppose that −ψ(x, 0) = −Ψ0(x) is a positive excursion
from Eex with distinct values of local minima. Then, for a fixed t > 0, a mass-equipped tree
Tψ(t) ∈ B̃L|

plane for the potential ψ(x, t) is constructed as follows:

(a) The planar shape of the tree, as an element of BL|
plane, corresponds to the level set tree

of the negative potential restricted to the positive density domain: −ψ(x, t)|g(x,t)>0.
(This corresponds, for any given t > 0, to cutting zero-density space intervals and glue-
ing the potential segments from positive-density intervals to form a continuous positive
excursion.)

(b) Every leaf that corresponds to a local minimum point of ψ(x, t) is equipped with mass
m = t (Fig. 18, Stages 1, 2, 4).

(c) Every leaf that corresponds to a local minimum plateau of length ε in ψ(x, t) is equipped
with a double mass (mL, mR) that satisfies

mL + mR = ε/2 + t, (26)

where the values of (mL, mR) are obtained from the evolution of ψ(x, s) for s ∈ [0, t]
(Fig. 18, Stage 3).

(d) Every internal point that corresponds to a plateau of length ε that is not a local maximum
is equipped with mass m = ε/2 (Fig. 18, Stage 2). If the plateau is located within an
increasing interval of the potential ψ(x, t) (decreasing interval of −ψ(x, t)), the mass is
right-oriented (as in Fig. 18, Stage 2); if the plateau is located within a decreasing interval
of the potential ψ(x, t) (increasing interval of −ψ(x, t)), the mass is left-oriented.

Part (c) of this construction reflects the loss of memory property of annihilation dynamics.
Any pair of masses (mL, mR) that satisfies (26) is consistent with the model dynamics. The
unique reconstruction is only possible if one knows the time-advanced potential for the entire
interval [0, t].

Constructions 1, 2 andTheorem6 imply that the continuumballistic annihilation dynamics
is equivalent to the mass-equipped generalized dynamical pruning of the level set tree of the
initial potential. The next sections illustrates how this equivalence facilitates the analytical
treatment of the model.
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6.5 Ballistic Annihilation of an Exponential Excursion

This section examines a special case of piece-wise linear potential with unit slopes: a negative
exponential excursion. Consider potential

ψ(x, 0) = −HGW(λ)(x)

that is the negative Harris path (Sect. 2.3) of an exponential critical binary Galton–Watson
tree with parameter λ (Definition 2). In words, the potential is a negative finite excursion with
linear segments of alternating slopes ±1, such that the lengths of all segments except the
last one are i.i.d. exponential random variables with parameter λ/2. Accordingly, the initial
particle velocity v(x, 0) alternates between the values ±1 at epochs of a stationary Poisson
point process on R with rate λ/2, starting with +1 and until the respective potential crosses
the zero level.

Corollary 4 (Exponential excursion) Suppose g(x) ≡ 1 and initial potential Ψ0(x) =
−HGW(λ)(x). Then the corresponding tree V(Ψ0) ∈ BL|

plane is an exponential binary critical
Galton–Watson tree GW(λ).

Proof By Corollary 3, the tree V(Ψ0) is the level set tree of the negative potential −Ψ0(x).
The statement now follows from Theorem 1. ��

To formulate the next result, recall that if T
d∼ GW(λ) and ϕ(T ) = length(T ), then by

(16),

pt := P(ϕ(T ) > t) = e−λt
[

I0(λt) + I1(λt)
]
.

Also, the p.d.f. of length(T ) is given by �(x) of (9).

Theorem 7 (Ballistic annihilation of exponential excursion) Suppose the initial particle den-
sity is constant, g(x) ≡ 1, and the initial potential ψ(x, 0) is the negative Harris path of

an exponential critical binary Galton–Watson tree with parameter λ, i.e., V(Ψ0)
d∼ GW(λ).

Then, at any instant t > 0 the mass-equipped shock tree Vt = S̃t (length,V(Ψ0)) condi-
tioned on surviving, Vt �= φ, is distributed according to the following rules.

(i) The planar shape of the tree, as an element of BL|
plane, is distributed as an exponential

binary Galton–Watson tree GW(λt ) with λt := λpt .
(ii) A single or double mass points are placed independently in each leaf with the probability

of a single mass being

2

λ

�(t)

p2t
.

(iii) Each single mass at a leaf has mass m = t . For a double mass, the individual masses
(mL, mR) have the following joint p.d.f.

f (a, b) = �(a)�(b)

p2t − 2
λ
�(t)

for a, b > 0, a ∨ b ≤ t < a + b.
(iv) The number of mass points placed in the interior of any edge is distributed geometrically

with the probability of placing k masses being

pt
(
1 − pt

)k
, k = 0, 1, 2, . . . .
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The locations of k mass points are independent uniform in the interior of the edge. The
orientation of each mass is left or right independently with probability 1/2.

(v) The edge masses are i.i.d. random variables with the following common p.d.f.

�(a)

1 − pt
, a ∈ (0, t).

Proof Part (i) follows directly from Theorem 3(a).
To establish the other parts, we first introduce a particular representation of the survival

event St (ϕ, T ) �= φ, where we denote T = V(Ψ0). Let X denote the length of the edge of T
adjacent to the root and let x be the descendent vertex (a junction or a leaf) to the root in T . If
degT (x) = 3, let h1 and h2 represent the lengths of the two subtrees descendent from x . Then
the event St (ϕ, T ) �= φ can be written as the union of the following five non-overlapping
events, illustrated in Fig. 19,

{
St (ϕ, T ) �= φ

}
= {degT (x) = 3 and t ≤ h1 ∧ h2}

∪ {degT (x) = 3 and h1 ∧ h2 ≤ t < h1 ∨ h2}
∪ {degT (x) = 3 and h1 ∨ h2 ≤ t < h1 + h2}
∪ {degT (x) = 3 and h1 + h2 ≤ t < X + h1 + h2}
∪ {degT (x) = 1 and t < X}. (27)

The probabilities of the five events in (27) are computed below.

Case I

P(degT (x) = 3 and t ≤ h1 ∧ h2) = 1

2
P(t ≤ h1 ∧ h2 |degT (x) = 3)

= p2t
2

. (28)

Case II

P(degT (x) = 3 and h1 ∧ h2 ≤ t < h1 ∨ h2)

= 1

2
P(h1 ∧ h2 ≤ t < h1 ∨ h2 |degT (x) = 3)

= P(h1 < t < h2 |degT (x) = 3)

= pt
(
1 − pt

)
. (29)

Case III

P(degT (x) = 3 and h1 ∨ h2 ≤ t < h1 + h2)

= 1

2
P(h1 ∨ h2 ≤ t < h1 + h2 |degT (x) = 3)

= 1

2
P(h1 ∨ h2 ≤ t |degT (x) = 3) − 1

2
P(t < h1 + h2 |degT (x) = 3)

= 1

2

(
1 − pt

)2 − 1

2
Fh1+h2(t),

where

Fh1+h2(t) := P(h1 + h2 < t |degT (x) = 3) =
t∫

0

� ∗ �(y) dy.
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Since pt = 1−
t∫

0
�(x) dx , the Laplace transform Lp(s) of pt can be expressed via

the Laplace transform L�(s) of �(t) as follows:

Lp(s) = 1

s
−

∞∫

0

t∫

0

e−st�(x) dx dt = 1

s
− 1

s
L�(s).

Thus, by (13),

Lp(s) = 1

2s
+ 1

λ
L�(s) − 1

2s

(
L�(s)

)2
. (30)

Hence, the Laplace transform of Fh1+h2(t) is

LFh1+h2(s) = 1

s

∞∫

0

e−st� ∗ �(t) dt = 1

s

(
L�(s)

)2

= 1

s
+ 2

λ
L�(s) − 2Lp(s).

Therefore,

Fh1+h2(t) = 1 + 2

λ
�(t) − 2pt

and

P(degT (x) = 3 and h1 ∨ h2 ≤ t < h1 + h2) = 1

2

(
1 − pt

)2 − 1

2
Fh1+h2(t)

= p2t
2

− 1

λ
�(t). (31)

Case IV

P(degT (x) = 3 and h1 + h2 ≤ t < X + h1 + h2)

= 1

2
P(h1 + h2 ≤ t < X + h1 + h2 |degT (x) = 3)

= 1

2

t∫

0

e−λ(t−y)� ∗ �(y) dy

= 1

2λ
φλ ∗ � ∗ �(t) = 1

λ
�(t) − 1

2λ
φλ(t) (32)

by (12).
Case V

P(degT (x) = 1 and t < X) = 1

2
P(t < X) = 1

2
e−λt = 1

2λ
φλ(t). (33)

Observe that the probabilities in (28), (29), (31), (32), and (33) add up to

pt = P
(
St (ϕ, T ) �= φ

)
.

Take a vertex v which is either an internal vertex or a root of T = V(Ψ0), and select one
of its descendent subtrees (there will be just one in case if v is a root). Denote it by Δv .
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Fig. 19 Subevents used in the proof of Theorem 7. Solid line depicts (a part of) pruned tree St (ϕ, T ). Dashed
line depicts (a part of) initial tree T

Conditioning on the event {St (length,Δv) �= φ}, Case III computes the probability that
S̃t (length,Δv) is a leaf edge with a double mass point at the leaf vertex, while together,
Case IV and Case V compute the probability that S̃t (length,Δv) is a leaf edge with a single
mass point at the leaf vertex. To prove part (ii), observe that the probabilities in (32) and

(33) add up to 1
λ
�(t), while the probabilities in (31), (32), and (33) add up to p2t

2 . Thus, the

fraction of leaves with single sink is 1
λ
�(t)
/

p2t
2 .

By construction, each single mass at a leaf has mass t . For a double mass, (31) implies the
following cumulative distribution function for positive a and b satisfying a ∨b ≤ t < a +b.

F(a, b) = P
(
degT (x) = 3, h1 ≤ a, h2 ≤ b, t < h1 + h2 |St (ϕ, T ) �= φ

)

p2t
2 − 1

λ
�(t)

=

a∫

0
P
(
t − y < h2 ≤ b | St (ϕ, T ) �= φ and degT (x) = 3

)
�(y) dy

p2t − 2
λ
�(t)

=

a∫

0

(
pt−y − pb

)
�(y) dy

p2t − 2
λ
�(t)

=

a∫

0
pt−y�(y) dy − pb

(
1 − pa

)

p2t − 2
λ
�(t)

.

Differentiating, we obtain the statement of part (iii):

f (a, b) = ∂2

∂a ∂b
F(a, b) = �(a)�(b)

p2t − 2
λ
�(t)

.

For part (iv) observe that by (29),

P(degT (x) = 3 and h1 ∧ h2 ≤ t < h1 ∨ h2 |St (ϕ, T ) �= φ) = 1 − pt . (34)

Each interior point mass in the mass-equipped shock tree Vt is placed at a location of an
internal vertex of T = V(Ψ0), where exactly one of the two descendant subtrees had been
pruned out. Thus, each edge in Vt is partitioned into subintervals whose lengths are inde-
pendent exponential random variables with parameter λ. At every point that separates a pair
of adjacent subintervals there placed a mass, which can have either left or right orientation
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independently with probability 1/2. Equation (34) implies that the number of these subin-
tervals in an edge of Vt is a geometric random variable with parameter pt . These geometric
random variables are independent from the rest of construction (i.e., exponential lengths of
the subintervals, the point masses, and the combinatorial shape of Vt ).
Finally, for a ∈ (0, t), equation (29) implies

P(degT (x) = 3 and h1 ∧ h2 ≤ a < t < h1 ∨ h2 |St (ϕ, T ) �= φ)

pt (1 − pt )

= P(h1 ≤ a < t < h2 | St (ϕ, T ) �= φ and degT (x) = 3)

pt (1 − pt )

= pt (1 − pa)

pt (1 − pt )
= 1 − pa

1 − pt
.

Next, we differentiate the above probability in order to obtain the p.d.f. for the mass of an
interior sink, as in part (v),

d

da

1 − pa

1 − pt
= �(a)

1 − pt
.

��

6.6 Random Sink in an Infinite Exponential Potential

Here we focus on the dynamics of a random sink in the case of a negative exponential
excursion potential. To avoid subtle conditioning related to a finite potential, we consider
here an infinite exponential potential Ψ

exp
0 (x), x ∈ R, constructed as follows. Let xi , i ∈ Z

be the epochs of a Poisson point process on R with rate λ/2, indexed so that x0 is the
epoch closest to the origin (Fig. 20). The initial velocity v(x, 0) is a piece-wise constant
continuous function that alternates between values ±1 within the intervals (xi − 1, xi ] and
with v(x0, 0) = 1. Accordingly, the initial potentialΨ exp

0 (x) is a piece-wise linear continuous
function with a local minimum at x0 and alternating slopes ±1 of independent exponential
duration. The results in this section refer to the sink M0 with initial Lagrangian coordinate
x0. We refer to M0 as a random sink, using translation invariance of Poisson point process.

Observe that for any fixed t > 0, the dynamics of M0 is completely specified by a finite
non-positive excursion within Ψ

exp
0 (x) of length 2t (see Fig. 20). The respective Harris path

is an exponential Galton–Watson tree GW(λ). The dynamics of M0 consists of alternating
intervals ofmass accumulation (vertical segments ofG(x,ψ)) andmotion (horizontal segments
of G(x,ψ)), starting with a mass accumulation interval. Label the lengths vi of the vertical
segments and the lengths hi of the horizontal segments in the order of appearance in the

Fig. 20 Random sinkM0 originates at point x0 – the local minimum closest to the origin. Its dynamics during
a finite time interval [0, t] is completely specified by a finite negative excursion Bt

0 of length 2t , similar to the
one highlighted in the figure
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Fig. 21 Dynamics of a random sink: an illustration. The trajectory of a sink is partitioned into alternating
intervals of mass accumulation of duration v j and intervals of movement with no mass accumulation of
duration h j . Each v j is an exponential random variable with parameter λ. Each h j is distributed as the total
length of a critical Galton–Watson tree with exponential edge lengths with parameter λ

examined trajectory. Corollary 4 implies that vi , hi are independent; the lengths of vi are
i.i.d. exponential random variables with parameter λ; and the lengths of hi equal the total
lengths of independent Galton–Watson trees GW (λ). This description, illustrated in Fig. 21,
allows us to find the mass dynamics of a random sink, which is described in the next two
theorems.

Theorem 8 (Growth probability of a random sink) The probability ξ(t) that a random sink
M0 is growing at a given instant t > 0 (that is, it is at rest and accumulates mass) is given
by

ξ(t) = e−λt I0(λt). (35)

Proof Let vi , i ≥ 1 be independent exponential random variables with parameter λ, and hi ,
i ≥ 1 be the total lengths of independent GW (λ) trees. The sum v1 +· · ·+vk has the gamma
density γλ,k(x) = 1

(k−1)!λ(λx)k−1e−x . The probability ξ(t) that a random sink is growing
at a given instant t > 0 is

ξ(t) := P( a random sink is growing at instant t )

=
∞∑

k=1

P

(
k−1∑

i=1

[vi + hi ] < t < vk +
k−1∑

i=1

[vi + hi ]
)

=
∞∑

k=1

t∫

0

⎛

⎝
∞∫

t−x

λe−λydy

⎞

⎠ γk−1 ∗ �k−1(x)dx

=
∞∑

k=1

t∫

0

e−λ(t−x)γk−1 ∗ �k−1(x)dx = 1

λ

∞∑

k=1

γk ∗ �k−1(t), (36)
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where

�k(x) = � ∗ . . . ∗ �︸ ︷︷ ︸
k times

(x).

We calculate the Laplace transform Lξ(s) of the probability ξ(t) in (36) as follows. We use
the formula for the Laplace transform of �(x) derived in (11) and (36) to obtain

Lξ(s) = 1

λ

∞∑

k=1

(
λ

λ + s

)k (
L�(s)

)k−1 = 1

λ + s − λL�(s)

= 1

λ + s − λ2

λ+s+
√

(λ+s)2−λ2

= 1√
(λ + s)2 − λ2

. (37)

Finally, we use formula 29.3.93 in [2] to invert the Laplace transform in (37), and obtain

ξ(t) = e−λt I0(λt).

��
Theorem 9 (Mass distribution of a random sink) The mass of a random sink M0 at instant
t > 0 has probability distribution

μt (da) = λ

2
e−λt

[
I0
(
λ(t − a/2)

)+ I1
(
λ(t − a/2)

)]
I0(λa/2) · 1(0,2t)(a)da

+ e−λt I0(λt)δ2t (da), (38)

where δ2t denotes Dirac delta function (point mass) at 2t .

Proof Let mt denote the mass of a random sink at a fixed instant t > 0. When the sink is not
growing, its mass mt is strictly smaller than 2t . Then for any positive a < 2t ,

P(mt ≤ a) =
∞∑

k=1

P

(
−hk +

k∑

i=1

[vi + hi ] ≤ a

2
< t <

k∑

i=1

[vi + hi ]
)

=
∞∑

k=1

a/2∫

0

⎛

⎝
∞∫

t−x

�(y)dy

⎞

⎠ γk ∗ �k−1(x)dx,

and the corresponding density will be

d

da
P(mt ≤ a) = 1

2

∞∫

t−a/2

�(y)dy ·
∞∑

k=1

γk ∗ �k−1(a/2)

= λ

2

∞∫

t−a/2

�(y)dy · ξ(a/2)

= λ

2
e−λ(t−a/2)

[
I0
(
λ(t − a/2)

)+ I1
(
λ(t − a/2)

)] · e−λa/2 I0(λa/2)

= λ

2
e−λt

[
I0
(
λ(t − a/2)

)+ I1
(
λ(t − a/2)

)] · I0(λa/2)
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by (16) and (35). Thus, the distribution of the mass of a random sink at instant t is given by

μt (da) = 1(0,2t)(a) · d

da
P(mt ≤ a) da + ξ(t)δ2t (da)

= λ

2
e−λt

[
I0
(
λ(t − a/2)

)+ I1
(
λ(t − a/2)

)]
I0(λa/2) · 1(0,2t)(a)da

+ e−λt I0(λt)δ2t (da),

where δ2t denotes Dirac delta function (point mass) at 2t . ��
Remark 2 One can notice that the continuum annihilation dynamics of this section, with its
shock waves, shock wave trees, and massive points is reminiscent of that in the 1-D inviscid
Burgers equation that describes the evolution of the velocity field v(x, t):

∂tv(x, t) + v(x, t) ∂xv(x, t) = 0, x ∈ R, t ∈ R+. (39)

The Burgers dynamics appears in a surprising variety of problems, ranging from cosmology
to fluid dynamics and vehicle traffic models; see [6,24,26] for comprehensive review. The
solution of the Cauchy problem for the Burgers equation develops singularities (shocks) that
correspond to intersection of individual particles. The shocks evolve via the shock waves that
can be described as massive particles that aggregate the colliding regular particles and hence
accumulate the mass of the media. The dynamics of these massive particles generates a tree
structure for their world trajectories, the shock wave tree [12,26].

The case of smooth random initial velocity can be treated explicitly via the Hopf-Cole
solution. The case of non-smooth random initial velocities, e.g. a white noise or a (fractional)
Brownian motion, has been extensively studied, both numerically [43] and analytically [11,
12,25,45]. In this case, tracing the dynamics of the massive particles backward in time (from
a point within a shock tree to the leaves) corresponds to fragmentation of the mass and
describes the genealogy of the shocks, i.e., the sets of particles that merge with a given
massive particle [10,25]. In particular, Bertoin [12] established that the shock wave tree for a
Brownian motion initial velocity becomes the eternal additive coalescent after a proper time
change; similar arguments apply for the Lévy type initial velocities [37].

7 Real Trees

Recall that a metric space (X , d) is called 0-hyperbolic, if any quadruple w, x, y, z ∈ X
satisfies the following four point condition [21, Lemma 3.12]:

d(w, x) + d(y, z) ≤ max{d(w, y) + d(x, z), d(x, y) + d(w, z)}. (40)

The four point condition is an algebraic description of an intuitive geometric constraint on
geodesic connectivity of quadruples that is shown in Fig. 22a. An equivalent way to define
0-hyperbolicity is the three point condition illustrated in Fig. 22b; it states that any triangle is
a tripod. It is readily seen that the four point condition is satisfied by any finite tree with edge
lengths (considered as a metric space with segment lengths induced by the edge lengths).
In general, a connected and 0-hyperbolic metric space is called a real tree, or R-tree [21,
Theorem 3.40]. We denote a real tree by (T , d), referring to the underlying space T and
metric d , respectively. A real tree (T , d) is geodesically linear, which means that for any two
points x, y ∈ T there exists a unique segment (an isometry image) within T with endpoints
{x, y} [21, Definition 3.2]. We denote this segment by [x, y] ⊂ T . A real tree is called rooted
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(a) (b)

Fig. 22 Equivalent conditions for 0-hyperbolicity of a metric space (X , d). a Four point condition: any
quadruple w, x, y, z ∈ X is geodesically connected as shown in the figure. This configuration is algebraically
expressed in Eq. (40). b Three point condition: any triplet x, y, z ∈ X is geodesically connected as shown in
the figure (i.e., any triangle is a tripod)

if one of its points, denoted here by ρT , is selected as the tree root. Similarly to the case of
finite trees, we say that a point p ∈ T is an ancestor of point q ∈ T if the segment with
endpoints q and ρ includes p: p ∈ [q, ρ] ⊂ T . In this case, the point q is called a descendant
of point p. We denote byΔp,T the descendant tree at point p, that is the set of all descendants
of point p ∈ T , including p as the tree root. The set of all descendant leaves of point p is
denoted by Δ◦

p,T .

7.1 Real Tree Description of Ballistic Annihilation

Weconstruct here (Sect. 7.1.1) anR-treeT = T(Ψ0) that describes the entiremodel dynamics
as coalescence of particles and sinks; this tree is sketched by gray lines in the top panel of
Figs. 10 and 23. Specifically, the tree consists of points (x, t) such that there exist either a
particle or a sink with coordinate x at time t . There is one-to-one correspondence between
the initial particles (x, 0) and leaf vertices ofT. Each leaf edge ofT corresponds (one-to-one)
to the free (ballistic) run of a corresponding particle before annihilating in a sink. Four of
such free runs are depicted by green arrows in Fig. 23. The shock wave tree (movement and
coalescence of sinks) corresponds to the non-leaf part of the tree T; it is shown by blue lines
in Figs. 10 and 23. We adopt a convention that the motion of a particle consists of two parts:
an initial ballistic run at unit speed, and subsequent motion within a respective sink. For
example, the within-sink motion of particles x and x ′ is shown by red line in Fig. 23. This
interpretation extends motion of all particles to the same time interval [0, tmax], with tmax

being the time when the last remaining sink accumulates the total mass on the initial interval.
This final sink serves as the tree root. Section 7.1.1 introduces a proper metric on this space
so that the model is represented by a time oriented rooted R-tree. In particular, the metric
induced by this tree on the initial particles (x, 0) becomes an ultrametric, with the distance
between any two particles equal to the time until their collision (as particles or as respective
sinks).

7.1.1 R-Tree Representation of Ballistic Annihilation

We construct here a real tree representation of the continuum ballistic annihilation model
of Sect. 6. Specifically, we assume a unit particle density g(x) ≡ 1 and initial potential
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Fig. 23 R-tree representation of a ballistic annihilationmodel with a unit slope potential: an illustration. Figure
illustrates dynamics of four points, x, x ′, y, and y′, marked in the horizontal space axis. The pairs of points
{x, x ′} and {y, y′} collide and annihilate with each other. Green arrows correspond to ballistic runs of points
x, x ′, y, y′, and hence to leaves of tree T(Ψ0). Red line corresponds to the trajectory of points x, x ′ after their
collision, within a sink. The rest of notations are the same as in Fig. 10 (Color figure online)

−Ψ0(x) ≡ −ψ(x, 0) ∈ Eex, i.e.Ψ0(x) is a unit slope negative excursion with a finite number
of segments on a finite interval [a, b] (e.g., bottom panel of Fig. 10). Recall that the interval
[a, b] completely annihilates by time tmax = (b−a)/2, producing a single sink at space-time
location ((b + a)/2, tmax).

Consider the model’s entire space-time domain T = T(Ψ0) that consists of all points of
the form (x, t), x ∈ [a, b], 0 ≤ t ≤ tmax, such that there exists either a particle or a sink at
location x at time instant t . The shaded (hatched) regions in the top panels of Figs. 10 and 15
are examples of such sets of points. For any pair of points (x, t) and (y, s) in T, we define
their unique earliest common ancestor as a point

AT((x, t), (y, s)) = (z, w) ∈ T

such that w is the infimum over all w′ such that

∃ z′ : {(x, t), (y, s)} ∈ Δ(z′,w′),T.

The length of the unique segment between the points (x, t) and (y, s) is defined as

d
(
(x, t), (y, s)

) = 1

2

(
(w − t) + (w − s)

) = 1

2
(2w − s − t), (41)

where w is the time component of (z, w) = AT((x, t), (y, s)).
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The tree (T, d) for a simple initial potential is illustrated in the top panel of Fig. 10 by
gray lines. The tree has a relatively simple structure. There is a one-to-one correspondence
between the initial particles (x, 0), x ∈ [a, b], and the leaf vertices ofT. There is a one-to-one
correspondence between the ballistic runs of the initial particles (runs before collision and
annihilation) and the leaf edges of T. Four of such runs are shown by green arrows in Fig. 23.
There is one-to-one correspondence between the sink points (σ (t), t) and the non-leaf part of
T. In particular, the tree root corresponds to the final sink ((a + b)/2, tmax). The sink points
are shown by blue line in Figs. 10 and 15. It is now straightforward to check that the tree
(T, d) satisfies the four point condition.

Consider again the sink subspace of T, which consists of the points {σ(t), t)} such that
there exists a sink at location σ(t) at time instant t , equipped with the distance (41). This
metric subspace is also a tree, as a connected subspace of anR-tree [21]. This tree is isometric
to the shock wave tree S(Ψ0) and hence to either of its graphical representations G(x,t)(Ψ0)

or G(x,ψ)(Ψ0) that are illustrated in Figs. 10 and 15 (top and bottom panels, respectively).
From the above construction, it follows that all leaves (x, 0) are located at the same

depth (distance from the root) tmax. To see this, consider the segment that connect a leaf
and the root and apply (41). Moreover, each time section at a fixed instant t0, sec(T, t0) =
{(x, t0) ∈ T}, is located at the same depth tmax − t0. This implies, in particular, that for
any fixed t0 ≥ 0, the metric induced by T on sec(T, t0) is an ultrametric, which means that
d1(p, q) ≤ d1(p, r) ∨ d1(r , q) for any triplet of points p, q, r ∈ sec(T, t0). Accordingly,
each triangle p, q, r ∈ sec(T, t0) is an isosceles, meaning that at least two of the three
pairwise distances between p, q and r are equal and not greater than the third [21, Def. 3.31].
The length definition (41) implies that the distance between any pair of points from any fixed
section sec(T, t0) equals the time until the two points (each of which can be either a particle
or a sink) collide.

We notice that the collection of leaf vertices Δ◦
p,T

descendant to a point p ∈ T can be
either a single point (x p, 0), if p is within a leaf edge and represents the ballistic run of
a particle, or an interval {(x, 0) : xleft(p) ≤ x ≤ xright(p)}, if p is a non-leaf point that
represents a sink. We define the mass m(p) of a point p ∈ T as

m(p) =
∫

x :(x,0)∈Δ◦
p,T

g(z)dz = xright(p) − xleft(p),

where the last equality reflects the assumption g(z) ≡ 1. The mass m(p) generalizes the
quantity “number of descendant leaves” (Sect. 4) to the R-tree situation with an uncountable
set of leaves. We observe that (i) a point p ∈ T represents a ballistic run if and only if
m(p) = 0; (ii) a point p ∈ T represents a sink if and only if m(p) > 0. This means that the
shock wave tree, which is isometric to the sink part of the tree (T, d), can be extracted from
(T, d) by the condition {p : m(p) > 0}.

7.2 Metric Spaces on the Set of Initial Particles

In this section we discuss two metrics on the system’s domain [a, b], which is isometric to
the set {(x, 0) : x ∈ [a, b]} of initial particles. These metrics contain the key information
about the system dynamics and, unlike the complete tree (T, d) of Sect. 7.1.1, can be readily
constructed from the potential Ψ0(x). One of these descriptions is an R-tree and the other is
not.
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Metrich1(x, y) reproduces theultrametric inducedby (T, d)on [a, b]. Belowweexplicitly
connect this metric to Ψ0(x). For any pair of points x, y ∈ [a, b] we define a basin BΨ0(x, y)

as the interval that supports the minimal negative excursion within Ψ0(x) that contains the
points x, y. Formally, assuming without loss of generality that x < y we find the maximum
of Ψ0 on [x, y]:

mΨ0(x, y) = sup
z∈[x,y]

Ψ0(z)

and use it to define the basin BΨ0(x, y) = [l, r ], where
l = sup{z : z ≤ x, Ψ0(z) ≥ mΨ0(x, y)},
r = inf{z : z ≥ y, Ψ0(z) ≥ mΨ0(x, y)}.

The metric is now defined as

h1(x, y) = 1

2
|BΨ0(x,y)|.

It is straightforward to check that

h1(x, y) = the time until collision of the particles (x, 0) and (y, 0),

where the collision is understood as either collision of particles, collision of sinks that anni-
hilated the particles, or collision between a sink that annihilated one of the particles and the
other particle. For instance, the claim is readily verified, by examining the bottom panel of
Fig. 23, for any pair of points from the set {x, x ′, y, y′}. The metric space ([a, b], h1) is not
a tree. Moreover, this space is totally disconnected, since there only exists a finite number of
points (local minima of Ψ0(x)) that have a neighborhood of arbitrarily small size. Any other
point at the Euclidean distance ε from the nearest local minimum is separated from other
points by at least ε/2.

Metric h2(x, y) describes the mass accumulation by sinks during the annihilation process.
Specifically,we introduce an equivalence relation among the annihilating particles, bywriting
x ∼Ψ0 y if the particles with initial coordinates x and y collide and annihilate with each other.
For example, in Fig. 23 we have x ∼Ψ0 x ′ and y ∼Ψ0 y′. The following metric is now defined
on the quotient space [a, b]|∼Ψ0

:

h2(x, y) = 2 sup
z∈[x,y]

[Ψ0(z)] − Ψ0(x) − Ψ0(y).

In words, the distance h2(x, y) between particles x and y equals the total mass accumulated
by the sinks to which the particles belong during the time intervals between the instants
when the particles joined the respective sinks and the instant of particle (or respective sink)
collision. Another interpretation is that h2(x, y) equals to the minimal Euclidean distance
between points x, y ∈ [a, b]|∼Ψ0

in the quotient space; one can travel in this quotient space
as along a regular real interval, with a possibility to jump (with no distance accumulation)
between equivalent points.

We observe that metric h2(x, y) coincides with that of Eq. (1). Hence, the metric space
([a, b]|∼Ψ0

, h2) is a tree that is isometric to the level set tree of the potential Ψ0(x) on [a, b]
and hence to the (finite) shock wave tree V(Ψ0) (by Corollary 3), with the convention that
the root is placed in a ∼Ψ0 b. This means, in particular, that prunings of these two trees, with
the same pruning function and pruning time, coincide.
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7.3 Other Prunings onT

One can introduce a large class of prunings on an R-tree (T, d) following the approach used
above to define the point mass m(p). Specifically, consider a measure η(·) on [a, b] and
define mη(p) = η(Δ◦

p,T
). The function mη(p) is nondecreasing along each segment that

connect a leaf and the root ρT of T. Hence, one can define a pruning with respect to mη on T

by cutting all points p with mη(p) < t for a given t ≥ 0. It is readily seen that the function
mη(p) typically has discontinuities along a path between a leaf and the root ofT. This means
that pruning with respect to mη typically does not have the semigroup property.

8 Discussion

This paper introduces a generalized dynamical pruning of rooted trees (Sect. 3) that encom-
passes several pruning operations discussed in the probability literature, notably including
the tree erasure from leaves at a constant rate of Example 1 [17,21,38] and Horton pruning of
Example 2 [14,33,34,40]. Curiously, these two examples seem to be the only cases when the
pruning satisfies the semigroup property (either in discrete or continuous time). The other
natural pruning operations, like pruning by the total tree length (Example 3) or by the num-
ber of leaves (Example 4), do not have the semigroup property. The absence of semigroup
property is related to the existence of discontinuities of a respective pruning function ϕ(T )

along a tree T ∈ Lplane. It would be interesting to find the necessary and sufficient conditions
on ϕ(T ) for the existence or absence of the semigroup property.

The presented results naturally complement an existing modeling framework for finite
binary self similar trees [31–33], and are tailored for a particular application—continuum
ballistic annihilation model—considered in this work (Sect. 5,6). However, the generalized
dynamical pruning is readily applicable to more general R-trees as discussed in Sect. 7. For
instance, continuum ballistic annihilation with a general continuous potential is a natural
object to be studies in a real tree framework.

Pruning might play a role in the analysis of dynamical systems, including the problem of
finding self-similar or time-invariant solutions. We show here (Sect. 6) that the dynamics of
a ballistic annihilation model A+ A → ∅, well known in the physics literature, is equivalent
to the generalized dynamical pruning of a level set tree representation of the model potential
(Sect. 6.4, Theorem 6). This tree-based representation of the model dynamics opens a way to
a complete probabilistic description of model solutions (Sect. 6.5, Theorem 7), and finding
the time evolution of selected statistics (Sect. 6.6, Theorems 8, 9). It seems promising to
expand the proposed analysis to other initial potentials, as well as to other particle systems
known to be critically dependent on the shock dynamics.

Tree measures invariant with respect to the generalized pruning (Sect. 3.4, Definition 1)
are abundant in BLplane. A natural example is the critical binary Galton–Watson tree GW(λ)

with i.i.d. exponential edge lengths, which is a traditional subject of invariance studies [34].
This tree is shown here to be prune invariant under arbitrary choice of the pruning function
(Sect. 4.3, Theorem 2). The work [33] introduces a Hierarchical Branching Process (HBP)
that induces a variety of measures invariant with respect to the Horton pruning. It is very
likely that the approach used to construct the HBP can be used to construct measures invariant
with respect to other versions of the generalized dynamical pruning. An interesting problem
is finding measures invariant with respect to multiple versions of pruning. At the moment the
only known solution is the exponential critical binary Galton–Watson tree GW(λ), invariant
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with respect to all admissible prunings. It seems that a family of critical Tokunaga trees,
which is a one-parametric subclass of the HBP [33], is a promising candidate to be invariant
with respect to other prunings.
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