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Abstract
Self-similarity of random trees is related to the operation of pruning. Pruning R cuts the leaves
and their parental edges and removes the resulting chains of degree-two nodes from a finite
tree. A Horton–Strahler order of a vertex v and its parental edge is defined as the minimal
number of prunings necessary to eliminate the subtree rooted at v. A branch is a group of
neighboring vertices and edges of the same order. The Horton numbers Nk[K] and Nij [K] are
defined as the expected number of branches of order k, and the expected number of order-i
branches that merged order-j branches, j > i, respectively, in a finite tree of order K. The
Tokunaga coefficients are defined as Tij [K] = Nij [K]/Nj[K]. The pruning decreases the orders
of tree vertices by unity. A rooted full binary tree is said to be mean-self-similar if its Tokunaga
coefficients are invariant with respect to pruning: Tk := Ti,i+k[K]. We show that for self-similar
trees, the condition lim supk→∞ T

1/k
k < ∞ is necessary and sufficient for the existence of the

strong Horton law: Nk[K]/N1[K] → R1−k, as K → ∞ for some R > 0 and every k ≥ 1.
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This work is a step toward providing rigorous foundations for the Horton law that, being
omnipresent in natural branching systems, has escaped so far a formal explanation.

Keywords : Random Trees; Horton Law; Tokunaga Self-Similarity.

1. INTRODUCTION

Horton laws, which are akin to a power-law distri-
bution of the element sizes in a branching system,
epitomize the scale invariance of natural dendritic
structures. It is very intuitive that the existence
of Horton laws should be related to the self-
similar organization of branching, defined in suit-
able terms. Such relation, however, has escaped a
rigorous explanation, remaining for long time a part
of science literature folklore.1,2 This paper shows
that a weak (mean) invariance under the opera-
tion of tree pruning is sufficient for the Horton
law of branch numbers to hold in the strongest
sense, hence explaining and unifying many earlier
empirical observations and partial results in this
direction.

We work with binary trees, although our results
can be easily extended to the case of trees of a higher
degree. Recall that pruning of a finite rooted full
binary tree T cuts its leaves (vertices of degree one)
and their parental edges, and removes the result-
ing chains of degree-two vertices and their parental
edges (so-called series reduction). The Horton–
Strahler order k of vertex v is the minimal number of
prunings necessary to eliminate the subtree rooted
at v. A branch is a sequence of neighboring ver-
tices and their parental edges of the same order. We
write Nk for the total number of branches of order
k in a tree. A common empirical observation in the
natural dendritic structures is that Nk+1/Nk ≈ R,
3 ≤ R ≤ 5. This regularity was first described
by Horton3,4 in a study of river streams; it has
been strongly corroborated in hydrology1,5–9 and
expanded to biology and other areas10 since then.
Similar relations, referred to as Horton laws, are
reported for selected metric quantities, for example
the average lengths of river streams (lk+1/lk ≈ Rl),
average contributing areas of order-k drainage basin
(Ak+1/Ak ≈ RA), etc.

Informally, Horton laws suggest that the branch
order k is proportional to the logarithm of a suit-
ably defined “size” Sk of the branch: Sk ∝ Bk. A
geometric distribution of the branch counts Nk,

P(a random branch has order ≥ k) = R−k

is equivalent to a power-law distribution of branch
sizes:

P(Sk ≥ x) ∝ x−α, α = ln(R)/ ln(B).

Hence, the empirical Horton laws can be interpreted
as a power-law distribution of system element sizes.
This might hint at a scale-invariant organization of
the respective branching structures, as power laws
often accompany fractality.

For long time, the only rigorous result on validity
of Horton laws was that of Shreve,11 who demon-
strated that in a uniform distribution of rooted
binary trees with n leaves (that he called topolog-
ically random networks), the ratio Nk+1/Nk con-
verges to 4 as n goes to infinity. This model is
equivalent to the critical binary Galton–Watson
tree conditioned to have n leaves.12,13 Shreve26 also
showed that in a topologically random network the
average number Tij of side-branches of order i per
branch of order j only depends on the relative
ordering of the branches: Tij = 2j−i−1, as the tree
size increases. We notice that pruning decreases
the order of every branch by unity. Accordingly,
Shreve’s result implies, in particular, that the aver-
age numbers Tij are invariant under the pruning
operation: Tij = Ti−1,j−1. The topologically ran-
dom network was hence the first example of a model
that obeys both the Horton law of branch numbers
and structural invariance with respect to pruning.
The invariance with respect to pruning is called self-
similarity, and may refer to the invariance of distri-
butions, or the means of selected statistics (like is
the case with Shreve’s result).

Tokunaga14 introduced a broader class of mean-
invariant models defined by the constraint Tij =
Tj−i = a cj−i−1 for positive a, c. The validity of
the Tokunaga constraint has been empirically con-
firmed in numerous observed and modeled sys-
tems,7,10,15–17 notably including diffusion limited
aggregation,15,18 and two-dimensional site percola-
tion.19–21 Furthermore, Burd et al.13 demonstrated
that the Tokunaga constraint with (a, c) = (1, 2)
is the characteristic property of critical binary off-
spring distribution within the class of Galton–
Watson (non-necessarily binary) trees, and that the
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critical binary Galton–Watson trees are also distri-
butionally invariant with respect to pruning. Zali-
apin and Kovchegov22 have shown that both Horton
law with R = 4 and the Tokunaga constraint with
(a, c) = (1, 2) hold in a level-set tree representation
of a symmetric random walk, and that in general
such a tree is not equivalent to the critical binary
Galton–Watson model.

McConnell and Gupta23 have shown that the
Tokunaga constraint is sufficient for a Horton law.
Specifically, they proved that if the sequence of
branch counts Nk is related to the Tokunaga coef-
ficients Tk = a ck−1 via the recursive counting
equation

Nk = 2Nk+1 +
K−j∑
j=1

Tj Nk+j,

1 ≤ k ≤ K − 1, K ≥ 2, (1)

then Nk+1/Nk → R for any k ≥ 1 in the limit of
large-order trees. In this case

R =
2 + a + c +

√
(2 + a + c)2 − 8 c

2
, (2)

which was reported earlier (under the explicit
assumption that Horton law holds) by Tokunaga,14

Peckham,6 and others.
Equation (2) suggests that different Horton expo-

nents R can be easily attained by using the Toku-
naga side-branching with different pairs (a, c). At
the same time, most of the existing rigorous results
on the Horton laws in “natural” models (not
formulated explicitly in terms of Horton branch
counting) refer to the models equivalent to the
Galton–Watson critical binary tree or its slight ram-
ifications, with R = 4, or to trees with no side-
branching and R = 2. Recently, the authors estab-
lished24 a weak version of the Horton law for the
tree that describes the celebrated Kingman’s coa-
lescent process; this system has R = 3.043827 . . . .

This study expands the sufficient conditions for
the Horton law (in its strong version defined in
Sec. 2.4) to all sequences of side-branch coefficients
such that lim supk T

1/k
k < ∞. We also show that

this condition is necessary in the class of mean self-
similar trees. The Horton exponent in this case is
given by R = 1/w0, where w0 is the only real root of

t̂(z) = −1 + 2z +
∞∑

k=1

zk Tk

within the interval [0, 1/2], which was conjectured
by Peckham.6 The results are obtained in a prob-
abilistic setting and refer to the expectations of
branch counts with respect to a probability mea-
sure on the space of finite rooted full binary trees
of Horton–Strahler order K, as K increases. This
setup allows us to relax the assumption of similar
statistical structure of side-branching within each
branch, which is a typical assumption in the stud-
ies of Horton laws and tree self-similarity.6,23

We start by reviewing the essential definitions
in Sec. 2. Section 3 introduces self-similar trees in
a probabilistic setting, and establishes the equiva-
lence of prune-invariance and the constraint Tij =
Tj−i. The main results are proven in Sec. 4.

2. PRELIMINARIES

2.1. Rooted Trees

Recall that a simple graph is a collection of vertices
connected by edges in such a way that each pair of
vertices may have at most one connecting edge and
there is no self-loops. A tree is a connected simple
graph without cycles. In a rooted tree, one node is
designated as a root; this imposes the parent–child
relationship between the neighbor vertices. Specifi-
cally, of the two neighbor vertices the one closest to
the root is called parent, and the other — child. In
a rooted tree, each non-root vertex has the unique
parental edge that connects this vertex to its par-
ent. A leaf is a vertex with no children. The space
of finite unlabeled rooted full binary trees, includ-
ing the empty tree φ, is denoted by T . All internal
vertices in a tree from T have degree 3, leaves have
degree 1, and the root has degree 2.

2.2. Tree Pruning

Pruning of a tree is an onto function R : T → T ,
whose value R(T ) for a tree T �= φ is obtained by
removing the leaves and their parental edges from
T , and then compressing the resulting tree from T̃
by removing all degree-two chains (this operation is
known as series reduction). We also set R(φ) = φ.

2.3. Horton–Strahler Orders

The Horton–Strahler ordering of the vertices and
edges of a finite rooted binary tree T ∈ T is related
to the iterations Rk of the pruning operation.4,6,25

Specifically, a vertex v ∈ T and its parental edge
have order k = 1, 2, . . . if the subtree τv ∈ T
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Fig. 1 Example of pruning and Horton–Strahler ordering. The Horton–Strahler orders are shown next to each vertex of the
initial tree T . The figure shows the two stages of each pruning – cutting the leaves (top row), and consecutive series reduction
(bottom row). The order of the tree is k(T ) = 3 with N1 = 10, N2 = 3, N3 = 1, and N1,2 = 3, N1,3 = 1, N2,3 = 1.

rooted at v is eliminated during the kth iteration
of pruning:

k(v) = min
k≥1

(Rk(τv) = φ).

The order k(T ) of a non-empty tree coincides with
the maximal order of its vertices. We also set
k(φ)= 0. A branch is defined as a union of neighbor-
ing vertices and edges of the same order. Figure 1
illustrates the operation of pruning and the defini-
tion of Horton–Strahler orders.

Equivalently, the Horton–Strahler ordering can
be done by hierarchical counting.6,10,13 In this
approach, each leaf is assigned order k(leaf) = 1.
An internal vertex p whose children have orders i
and j is assigned the order

k(p) = max(i, j) + δij ,

where δij is the Kronecker’s delta. The parental
edge of a vertex has the same order as the vertex.

2.4. Horton Law

Let TK , K ≥ 1, be the subspace of finite binary trees
of Horton–Strahler order K. Consider a set of prob-
ability measures {µK}K≥1, each of which is defined
on TK , and write EK(·) for the mathematical expec-
tation with respect to µK . Let Nk = Nk[T ] be the
number of branches of order k in a tree T ∈ T . We
define the average Horton numbers, which are the

main object for our analysis:

Nk[K] = EK(Nk), 1 ≤ k ≤ K, K ≥ 1.

Definition 1. We say that a sequence of measures
{µK} satisfies a strong Horton law if

lim
K→∞

Nk[K]
N1[K]

= R1−k < ∞ for any k ≥ 1.

2.5. Tokunaga Coefficients

Let Nij = Nij[T ] denote the number of instances
when an order-i branch merges with an order-j
branch, 1 ≤ i < j, in a tree T . Such branches
are referred to as side-branches of order ij. Define
the respective expectation Nij[K] = EK(Nij). The
Tokunaga coefficients Tij [K] for subspace TK are
defined as

Tij [K] =
Nij[K]
Nj[K]

, 1 ≤ i < j ≤ K. (3)

Remark 1. Consider a situation when every
branch of order j has the same expected number
Sij of side-branches of order i < j. Then

Nij[K] = EK(Nij) = EK(EK(Nij |Nj))

= EK(Nj Sij) = Sij EK(Nj) = Sij Nj[K],

and hence

Tij [K] =
Nij[K]
Nj[K]

= Sij.

Such framework was considered by Shreve,26 Toku-
naga,14 Burd et al.13 and others. Our definition (3)
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includes this situation as a special case, although in
general it is free of the assumption of similar statis-
tical structure of individual branches.

3. SELF-SIMILAR TREES

Definition 2. A set of measures {µK} on {TK} is
called coordinated if Tij := Tij [K] for all K ≥ 2 and
1 ≤ i < j ≤ K.

For a set of coordinated measures {µK}, the Toku-
naga matrix TK for any K forms a K × K matrix

TK =



0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0
. . . . . .

...
...

...
. . . 0 TK−1,K

0 0 0 0 0


,

which coincides with the restriction of any larger-
order Tokunaga matrix TM , M > K, to the first
K × K entries.

Definition 3. A collection of coordinated proba-
bility measures {µK} on {TK} is called (mean) self-
similar if Tij = Tj−i for some sequence Tk ≥ 0,
k = 1, 2, . . . , and any K ≥ 2. The elements of the
sequence Tk are also referred to as Tokunaga coef-
ficients, which does not create confusion with Tij .

For a self-similar collection of measures, the matrix
of Tokunaga coefficients becomes Toeplitz:

TK =



0 T1 T2 . . . TK−1

0 0 T1 . . . TK−2

0 0
. . . . . .

...
...

...
. . . 0 T1

0 0 0 0 0


.

A variety of self-similar measures can be con-
structed for an arbitrary sequence of Tokunaga coef-
ficients Tk > 0, k ≥ 1. Next, we give one natural
example.

Example 1. Independent Random Attach-
ment. The subspace T1, which consists of a single-
vertex tree, possess a trivial unity mass measure.
To construct a random tree from T2, we select a dis-
crete probability distribution P1,2(n), n = 0, 1, . . . ,
with the mean value T1. A random tree T ∈ T2 is
obtained from the single-vertex tree τ1 of order 1 via
the following two operations. First, we attach two
child vertices to the only vertex of τ1. This creates a

tree of order 2 with no side-branches — two leaves
attached to the root. Second, we draw the number
N1,2 from the distribution P1,2, and attach N1,2 ver-
tices to this tree so that they form side-branches of
order {1, 2}.

In general, to construct a random tree from TK

for K ≥ 2 we select a set of discrete probability
distributions Pk,K(n), k = 1, . . . ,K − 1, with the
respective mean values Tk. A random tree T ∈ TK

is constructed in iterative fashion, starting from
the single-vertex tree τ1 and increasing its order
by adding new vertices. Specifically, to construct
a random tree τk of order k ≥ 2 from a random
tree τk−1 of order k − 1, we perform the follow-
ing operations. First, add two new child vertices
to every leaf of τk−1 hence producing a tree τ̃k of
order k with no side-branches of order 1. Second, for
each branch of order 2 ≤ j ≤ k in τ̃k draw a ran-
dom number N1j from the distribution Pj−1,K and
attach N1j new child vertices to this branch so that
they form side-branches of order 1. Each new ver-
tex is attached in random order with respect to the
existing side-branches. Specifically, we notice that
s ≥ 0 side-branches attached to a branch of order j
are uniquely associated with s+1 edges within this
branch. (When discussing the single branch of the
maximal order k, we count one “imaginary” edge
parental to the tree root.) The attachment of the
new N1j vertices among the s + 1 edges is given
by the equiprobable multinomial distribution with
s + 1 categories and N1j trials.

According to Remark 1, the self-similarity condi-
tion Ti,i+k[K] = Tk holds within each subspace TK ,
K ≥ 2.

Notice that pruning defines a down-shift of the
order subspaces, that is for K ≥ 1

R(TK) = TK−1.

Moreover, pruning decreases the Horton–Strahler
order of each vertex (and hence of each branch) by
unity; in particular

Nk[T ] = Nk−1[R(T )], k ≥ 2, (4)

Nij [T ] = Ni−1,j−1[R(T )], 2 ≤ i < j. (5)

This shift property allows us to establish connection
between the values of Tokunaga coefficients for dif-
ferent orders K. Specifically, consider measure µR

K
induced on TK by the pruning operator:

µR
K(A) = µK+1(R−1(A)) ∀A ⊂ TK .
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The Tokunaga coefficients computed on TK using
the induced measure µR

K are denoted by TR
ij [K].

Definition 4. A collection of coordinated proba-
bility measures {µK} on {TK} is called self-similar
if Tij [K] = TR

ij [K] for any K ≥ 2 and all 1 ≤ i <
j ≤ K.

Lemma 1. The Definitions 3 and 4 are equivalent.

Proof. The pruning-related index shift (4),(5)
implies

Ti+1,j+1[K + 1] = TR
ij [K]. (6)

• [3 ⇒ 4]: If a coordinated set of measures {µK}
satisfy Definition 3, then

Ti+1,j+1[K + 1]

Def3= Tj−i
Def3= Tij [K + 1] coordination= Tij [K].

Together with (6), this implies

Tij [K] = TR
ij [K],

which means that Definition 4 is also satisfied.

• [4 ⇒ 3]: If a coordinated set of measures {µK}
satisfy Definition 4, then

Tij [K] Def4= TR
ij [K]

by(6)
= Ti+1,j+1[K + 1]

coordination= Ti+1,j+1[K].

Hence

Ti+1,j+1[K] = Tij [K]

= · · · = T1,j−i+1[K] =: Tj−i,

which means that Definition 3 is also satisfied.

4. RESULTS

Consider a set of self-similar measures {µK}K≥1

with Tokunaga coefficients TK . We define the vector
of Horton indices as

ζK =


N1[K]
N2[K]

...
NK [K]

.

We also define the vector of normalized Horton
indices in R∞,

ξK :=
1

ζK(1)


ζK

0
0
...

 =



1
N2[K]/N1[K]

...
NK [K]/N1[K]

0
0
...


.

The average number of side-branches of order
1 ≤ i < K within TK is Ni[K] − 2Ni+1[K]. At the
same time, the number of side-branches of order i
can be computed by counting the side-branches of
order i for all larger-order branches:

K∑
j=i+1

Tij Nj[K] =
K−i∑
m=1

Tm Ni+m[K],

and therefore the vector of side-branches is TKζK .
Thus

TKζK =



1 −2 0 . . . 0

0 1 −2
. . .

...

0 0
. . . . . . 0

...
...

. . . 1 −2
0 0 . . . 0 0

 ζK . (7)

This can also be written as

Nk[K] = 2Nk+1[K] +
K−j∑
j=1

TjNk+j[K],

1 ≤ k ≤ K − 1, K ≥ 2, (8)

which is a probabilistic (mean) version of a deter-
ministic counting equation (1).

Next, define

GK :=


−1 T1 + 2 T2 . . . TK−1

0 −1 T1 + 2 . . . TK−2

0 0
. . . . . .

...
...

...
. . . −1 T1 + 2

0 0 0 0 −1


which is a K×K restriction of the following infinite
dimensional linear operator to the first K dimen-
sions:

G :=



−1 T1 + 2 T2 T3 . . .
0 −1 T1 + 2 T2 . . .

0 0 −1 T1 + 2
. . .

0 0 0 −1
. . .

...
...

. . . . . . . . .

. (9)
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Equation (7) implies GKζK = −eK , the Kth coor-
dinate basis vector, and therefore

ζK+1(2)
ζK+1(3)

...
ζK+1(K + 1)

 = −G−1
K eK =


ζK(1)
ζK(2)

...
ζK(K)

. (10)

Thus we proved the following.

Proposition 1. Let {µK} be a set of self-similar
measures on {TK}. Then for any K ≥ 1 and 1 ≤
j ≤ K,

Nj+1[K + 1] = ζK+1(j + 1) = ζK(j) = Nj[K].

Accordingly, we also have

Ni+1,j+1[K + 1] = Nij[K],

1 ≤ i < j ≤ K, K ≥ 2.

Observe that GξK = −1
ζK(1)eK , where, by construc-

tion, ζK(1) = N1[K] ≥ (T1 + 2)K−1. The follow-
ing proposition formalizes the condition required
for limK→∞ ξK = ξ, where ξ satisfies Gξ = 0 with
coordinates ξ(j) = R1−j. Finally, Theorem 1 at the
end of this section provides a complete analysis of
limK→∞ ξK in terms of the sequence Tj of Tokunaga
coefficients.

Proposition 2. Let {µK} be a set of self-similar
measures on {TK}. Suppose that the limit

R = lim
K→∞

ζK+1(1)
ζK(1)

= lim
K→∞

N1[K + 1]
N1[K]

(11)

exists and is finite. Then, the strong Horton law
holds; that is, for each positive integer j

ξ(j) = lim
K→∞

ξK(j) = lim
K→∞

Nj[K]
N1[K]

= R1−j.

Conversely, if the limit (11) does not exist, then
neither will limK→∞ ξK(j). That is, the limit
limK→∞ ξK(j) does not exist at least for some j.

Proof. Suppose that the limit R= limK→∞
ζK+1(1)
ζK(1)

exists and is finite. Proposition 1 implies for any

fixed integer m ≥ 1,

ζK(m + 1)
ζK(m)

=
ζK−m(1)

ζK−m+1(1)
→ R−1.

Thus, for any fixed integer j ≥ 2,

ξK(j) =
ζK(j)
ζK(1)

=
j−1∏
m=1

ζK(m + 1)
ζK(m)

→ R1−j .

Conversely, suppose the limit limK→∞
ζK+1(1)
ζK(1) does

not exist. Then, taking j = 2, we obtain

ξK(2) =
ζK(2)
ζK(1)

=
ζK−1(1)
ζK(1)

by Proposition 1. Thus, limK→∞ ξK(2) diverges.

Remark 2. The conditions of Proposition 2 can
be somewhat relaxed. Specifically, we only use the
self-similarity requirement to prove the shift equal-
ity (10). Hence, this equality together with the exis-
tence of the limit (11) suffices to obtain the strong
Horton law.

4.1. Expressing ζK(1) from {Tj}
In this section, we express ζK(1) in terms of the ele-
ments of the Tokunaga sequence {Tj}j=1,2,..., under
the assumption of a “tamed” Tokunaga sequence:
lim supj→∞ T

1/j
j < ∞. We define

t(i) =


−1 i = 0,
T1 + 2 i = 1,
Ti i ≥ 2

and let t̂(z) =
∑∞

j=0 zjt(j) = −1 + 2z +
∑∞

j=1 zjTj .
The quantity ζK(1) can be computed by counting,
and expressed via convolution products as follows:

ζK+1(1) =
K∑

r=1

∑
j1,j2,...,jr≥1

j1+j2+···+jr=K

t(j1)t(j2) · · · t(jr)

=
K∑

r=1

(t + δ0) ∗ (t + δ0) ∗ · · · ∗ (t + δ0)︸ ︷︷ ︸
r times

(K)

=
∞∑

r=1

(t + δ0) ∗ (t + δ0) ∗ · · · ∗ (t + δ0)︸ ︷︷ ︸
r times

(K),

where δ0(j) is the Kronecker delta, and therefore,
(t + δ0)(0) = 0. Hence, taking the z-transform of
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ζK+1(1), we obtain

∞∑
K=1

zK−1ζK(1) = 1 +
∞∑

r=1

[ ̂(t + δ0)(z)]r

= 1 +
∞∑

r=1

[t̂(z) + 1]r = − 1
t̂(z)

(12)

for |z| small enough.
For a holomorphic function expanding in a power

series f(z) =
∑∞

j=0 ajz
j in a non-empty neighbor-

hood of zero containing |z| ≤ ρ, define f̌(j) =
1

2πi

∮
|z|=ρ

f(z)
zj+1 dz = aj. Then we arrive with the fol-

lowing formula, expressing ζK(1) from {Tj},

ζK+1(1) = −
(

1
t̂

)
(K). (13)

Lemma 2. Let w0 be the only real root of t̂(z) =
−1+2z+

∑∞
j=1 zjTj in the interval (0, 1

2 ]. Then, for
any other root w of t̂(z), we have |w| > w0.

Proof. Observe that since {Tj} are all non-
negative reals, t̂(z̄) = t̂(z), and that the radius of
convergence of

∑∞
j=1 zjTj must be greater than w0.

Suppose w = reiθ (0 ≤ θ < 2π) is a root of magni-
tude at most w0. That is t̂(w) = 0 and

r := |w| ≤ w0.

Then t̂(w̄) = 0 and

0 =
1
2
[t̂(w) + t̂(w̄)] = −1 + 2r cos(θ)

+
∞∑

j=1

rjTj cos(jθ).

If r < w0, then

0 = −1 + 2r cos(θ) +
∞∑

j=1

rjTj cos(jθ)

≤ −1 + 2r +
∞∑

j=1

rjTj < −1

+ 2w0 +
∞∑

j=1

wj
0Tj = 0

arriving to a contradiction. Thus r = w0.

Next we show that θ = 0. Suppose not. Then

0 = −1 + 2r cos(θ) +
∞∑

j=1

rjTj cos(jθ)

< −1 + 2r +
∞∑

j=1

rjTj = −1 + 2w0

+
∞∑

j=1

wj
0Tj = 0

arriving to another contradiction. Hence r = w0,
θ = 0, and w = w0.

Let w0 denote the only root of t̂(z) in the real
line subinterval (0, 1

2 ] as in Lemma 2. Recall that
the radius of convergence L = (lim supj→∞ T

1/j
j )−1

of t̂(z) = −1 + 2z +
∑∞

j=1 zjTj is greater than w0.
Then, following Lemma 2, there is a positive real
γ ∈ (w0, L) such that

γ < w for all w �= w0 such that t̂(w) = 0. (14)

Now, (14) implies for 0 < ρ < w0,

ζK(1) =
−1
2πi

∮
|z|=ρ

dz

t̂(z)zK

= −Res
(

1
t̂(z)zK

;w0

)
− 1

2πi

∮
|z|=γ

dz

t̂(z)zK
.

Observe that Res( 1
t̂(z)zK ;w0) is a constant mul-

tiple of 1
wK

0
since w0 is a root of t̂(z) of alge-

braic multiplicity one. Thus, since w0 < γ and
| 1
2πi

∮
|z|=γ

dz
t̂(z)zK | ≤ 1

γK min|z|=γ |t̂(z)| ,

ζK+1(1)
ζK(1)

=
∣∣∣∣ζK+1(1)

ζK(1)

∣∣∣∣→ 1
w0

as K → ∞.

Hence Proposition 2 will imply the following lemma.

Lemma 3. Suppose lim supj→∞ T
1/j
j < ∞. Then,

for each positive integer j, the limit

ξ(j) = lim
K→∞

ξK(j)

exists, and ξ(j) = wj−1
0 .
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The converse is also true. Specifically, suppose the
limit

R = lim
k→∞

ζk+1(1)
ζk(1)

exists and is finite. Then, since ζk(1) ≥ T
k/j
j for all

j ∈ N and k ∈ jN,

lim sup
j→∞

T
1/j
j ≤ lim

k→∞
[ζk(1)]1/k = R < ∞.

Hence, we have proven another lemma.

Lemma 4. Suppose lim supj→∞ T
1/j
j = ∞. Then,

the limit limK→∞ ξK(j) does not exist at least for
some j.

We now combine the results in Lemmas 3 and 4
into the following theorem.

Theorem 1. Suppose lim supj→∞ T
1/j
j <∞. Then,

for each positive integer j

ξ(j) = lim
K→∞

ξK(j) = lim
K→∞

Nj[K]
N1[K]

= R1−j,

where 1/R = w0 is the only real root of the function
t̂(z) = −1 + 2z +

∑∞
j=1 zjTj in the interval (0, 1

2 ].

Conversely, if lim supj→∞ T
1/j
j = ∞, then the limit

limK→∞ ξK(j) = limK→∞
Nj [K]
N1[K] does not exist at

least for some j.

We notice that the fact that R is reciprocal to
the solution of t̂(z) = 0 was noticed by Peckham,6

under the assumption Nk ∼ cRK−k, as K → ∞.
Below we give several examples of Theorem 1.

Example 1. Shallow side-branching. Suppose
Tk = 0 for k ≥ 3, that is we only have “shallow”
side-branches of orders {j−2, j} and {j−1, j}. Then

t̂(z) = −1 + (T1 + 2) z + T2 z2.

The only root of this equation within [0, 1/2] is

w0 =

√
(T1 + 2)2 + 4T2 − (T1 + 2)

2T2
,

which leads to

R =
1
w0

=

√
(T1 + 2)2 + 4T2 + (T1 + 2)

2
.

In particular, if Tk = 0 for k ≥ 2, then R = T1 + 2;
such trees are called “cyclic”.6 This shows that the
entire range of Horton exponents 2 ≤ R < ∞ can
be achieved by trees with only very shallow side-
branching. This also shows that T1 ≥ 1 leads to

R ≥ 3, which seems to be the case for most of the
observed branching systems.

Example 2. Tokunaga self-similarity. suppose
Tj = a cj−1, where a, c > 0. This model received
considerable attention in the literature,6,14,23 in
part because of its ability to closely describe river
networks.17 Here we have

t̂(z) = −1 + 2z + az
∞∑

j=1

(cz)j−1

= −1 + 2z +
az

1 − cz

=
−1 + (a + c + 2)z − 2cz2

1 − cz

which leads to

− 1
t̂(z)

=
1 − cz

1 − (a + c + 2)z + 2cz2
,

and the discriminant is positive, (a + c + 2)2 − 8c >
(c + 2)2 − 8c = (c − 2)2 ≥ 0. Therefore, there will
be two positive roots, p1 > p2 of the denominator
1 − (a + c + 2)z + 2cz2, and

− 1
t̂(z)

=
1 − cz

2c(p1 − p2)(z − p1)
− 1 − cz

2c(p1 − p2)(z − p2)
.

Thus, since 1
z−p = −

∑∞
k=0

1
pk+1 zk for |z| < |p|, for-

mula (13) implies

ζK+1(1) =
1

2c(p1 − p2)

(
1 − cp2

pK+1
2

− 1 − cp1

pK+1
1

)
(15)

for |z| small enough, where one can easily check that
1 > cp2. Therefore, the conditions of Proposition 2
are satisfied with

1
R

= p2 =
a + c + 2 −

√
(a + c + 2)2 − 8c
4c

.

Hence,

R =
a + c + 2 +

√
(a + c + 2)2 − 8c
2

(16)

as in earlier works.6,14,23 Also, in agreement with
the Lemma 3, w0 = p2 = 1

R .

Example 3. “Differentiated Tokunaga” self-
similarity. Suppose Tj = a · jcj−1, where a, c > 0.
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Then

t̂(z) = −1 + 2z + az

∞∑
j=1

j(cz)j−1

= −1 + 2z +
az

(1 − cz)2

=
2c2z3 − c(c + 4)z2 + (a + 2c + 2)z − 1

(1 − cz)2
.

Here 1
R = w0 is the smallest positive real root of

polynomial

p(z) = 2c2z3 − c(c + 4)z2 + (a + 2c + 2)z − 1.

Now, since t̂(1/2) > 0, w0 ∈ (0, 1
2). In this exam-

ple, we cannot derive an explicit formula for R =
R(a, c). However, we solve p(w0) = 0 for c > 0,
obtaining the following relation among a, c and R:

c =
1
w0

+
√

a

(1 − 2w0)w0
=
(

1 +
√

a

R − 2

)
R.
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