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Abstract
We examine the geometry of earthquakes in time-space-magnitude domain using the Gromov hyperbolic
property of metric spaces. Gromov δ-hyperbolicity quantifies the curvature of a metric space via four
point condition, which is a computationally convenient analog of the famous slim triangle property. We
estimate the δ-hyperbolicity for the observed earthquakes in Southern California during 1981–2017. A set
of earthquakes is represented by a point field in space-time-magnitude domainD. The separation between
earthquakes is quantified by the Baiesi-Paczuski proximity η that has been shown efficient in applied clus-
ter analyses of natural and human-induced seismicity and acoustic emission experiments. The Gromov
δ is estimated in the earthquake space (D, η) and in the proximity graphs Gη0

obtained by connecting
pairs of earthquakes within proximity η0. All experiments result in the values of δ that are bounded from
above and do not tend to increase as the examined region expands. This suggests that the earthquake field
has hyperbolic geometry. We discuss the properties naturally associated with hyperbolicity in terms of
the examined earthquake field. The results improve the understanding of the dynamics of seismicity and
further expand the list of natural processes characterized by underlying hyperbolic geometry.
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1. Introduction

Large scale geometry, which studies objects and spaces as if viewed from afar, is a well es-
tablished area of mathematics, with specific ramifications in random walk theory, differential
geometry, geometric topology, and more [26, 32]. During the recent decades large scale geome-
try has been recognized as an efficient tool for applied analysis of complex networks [23, 24]. In
particular, the graphs that describe such diverse phenomena as the Internet, biological, social, or
science networks, have shown to have hyperbolic geometry at large scale [7, 11, 17, 21, 22, 23].
This means that these graphs can be naturally embedded in spaces of negative curvature, as op-
posed to the familiar flat Euclidean space. Krioukov et al. [24] have shown that such common
properties of observed complex networks as power law degree distribution and high cluster co-
efficient follow naturally from hyperbolicity of the embedding space. Moreover, the converse
is also true – if a network has a power law degree distribution, then its underlying geometry
is effectively hyperbolic. The underlying hyperbolicity has multiple tangible implications for
structure and dynamics of networks. For instance, the self-similarity (a.k.a. scale-free property)
of a network may reflect particular invariances of a hyperbolic space with respect to symmetry
transformations [24]. Optimal routing (sending a message between two points in a shortest time)
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has a natural implementation in a hyperbolic network, avoiding the intrinsic complications that
make this problem unsolvalbe in general graphs. This novel understanding explains an interest
to applied analysis of observed networks, with the goal of revealing their underlying geometry
[7, 11, 12, 17, 21, 22, 23, 24]. Here we perform a large scale geometric analysis of earthquakes
in time-space-energy domain.

Seismicity is a complex natural phenomenon that poses important challenges for science and
society [5]. Quantification of seismicity patterns is needed to mitigate the devastating economic
and humanitarian impact of natural and human-induced earthquakes. The need for such research
is highlighted by increasing population density in large urban areas near major active faults
(e.g., Tokyo, Istanbul, Los Angeles, San Francisco), the catastrophic earthquakes in Japan, Haiti
and Indonesia (life loss over 500,000, economical damage over $US 100 billion), and recent
earthquakes in the Midwestern US and other areas with hydrocarbon and geothermal production
[16].

Graph-theoretic analyses have shown efficient for better understanding the dynamics of seis-
micity on the intermediate time scales, from days to hundreds of years [1, 2, 4, 14, 27, 30, 31,
33, 34]. In this work, we estimate the large scale geometry of earthquakes proximity graphs,
and the general earthquake proximity space, using Gromov δ-hyperbolicity that measures large
scale curvature in a metric space. We find that the examined earthquake space and graphs ex-
hibit strong δ-hyperbolicity. This sheds some light at space-time organization of seismicity and
further expands the list of natural processes characterized by underlying hyperbolic geometry.

The rest of the paper is organized as follows. We begin by reviewing key facts about hyper-
bolic metric spaces in Sect. 2. In particular, we introduce Gromov δ-hyperbolicity via the Slim
Triangle Condition and the Four Point Condition in Sect. 2.1. Section 3 discusses the proposed
estimation approach and illustrates it in the Euclidean and hyperbolic planes. The earthquake
data and necessary phenomenological background is described in Sect. 4. The Baiesi-Paczuski
earthquake proximity that is used to measure separation between earthquakes in space-time-
energy domain is described in Sect. 4.3. The main results are presented in Sect. 5 that performs
hyperbolicity analysis in the proximity space of earthquakes, and in earthquake proximity graphs
(combinatorial and metric). Section 6 concludes.

2. Background: Hyperbolic Metric Spaces

This section reviews the key concepts related to the hyperbolic metric spaces. Recall that a
metric on a set X is a positive-definite symmetric function d : X × X → [0,∞) that satisfies
the triangle inequality [9]. A pair (X, d), where X is a set and d is a metric on it, is called
a metric space. A geodesic is the shortest path between two points in a metric space [9]. A
metric space is called geodesic if any two points are connected by a geodesic path. The familiar
n-dimensional Euclidean space Rn that consists of all points x = (x1, . . . , xn) with Euclidean
metric

d(x,y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2
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Figure 1: Euclidean (a) and hyperbolic (b) triangles ABC.

is a geodesic metric space. The Euclidean metric plays a special role in the Euclidean space
since this is the only metric (up to scaling) that is related to the inner product

d2(x,y) = 〈x− y,x− y〉 =
∑
i

(xi − yi)2.

The metric space (R3, d) describes many familiar properties of the physical three-dimensional
world around us. For instance, the geodesics are straight lines, the sum of the angles of any tri-
angle equals π, the area of a circle growth polynomially with its radius r, as πr2, and so on.
Interestingly, many of these properties are tightly connected to the underlying flat geometry of
the Euclidean space, which has been axiomatically described by Euclid via his five postulates
[10]. One of them (parallel postulate) can be phrased in the following form: Given a line and a
point not on it, there is exactly one line going through the given point that is parallel to the given
line. An interesting alternative geometry arises when the parallel postulate is dropped, while
the other four still hold. Some consequences of this omission are that geodesic lines are no
longer straight but curved, the sum of angles in a triangle is not equal to π, and so on, resulting
in curved spaces [10]. It can be shown that in an isotropic space, the parallel postulate can be
violated in exactly two ways: there might be no parallel lines through a given point, which leads
to so-called spherical (positively curved) geometry, or there exists an infinite number of parallel
lines, which leads to hyperbolic (negatively curved) geometry [8, 10].

We are interested here in negatively curved hyperbolic spaces. An isotropic hyperbolic space
is characterized by its constant curvature K = −ζ2 for some ζ > 0. The hyperbolic triangles
become thin, with the sum of the angles being less than π (and equal to zero for so-called ideal
triangles); see Fig. 1. The area Aζ(r) of a hyperbolic circle grows much faster than in Euclidean
case, depending exponentially on the radius r [6]:

Aζ(r) =
2π

ζ2
(cosh ζr − 1) =

2π

ζ2

(
eζr + e−ζr

2
− 1

)
∼ π

ζ2
eζr as r →∞.

The two-dimensional hyperbolic distance d = d(u, v) between points with polar coordinates
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u = (r1, θ1) and v = (r2, θ2) is defined via the hyperbolic law of cosines [24]:

cosh ζd = cosh ζr1 cosh ζr2 − sinh ζr1 sinh ζr2 cos ∆θ, (1)

where ∆θ = π− | π− | θ1 − θ2 || is the angle between u and v. It is straightforward to
check that the above expressions for Aζ(r) and d converge to the familiar Euclidean formulas as
ζ → 0, i.e. when the space flattens.

The thin triangle property and exponential growth of circle area are closely connected to
another informal statement: a hyperbolic space is similar to a tree. To develop intuition, consider
a combinatorial tree with branching index b (so that all internal vertices have degree b + 1). In
such a tree, the number of vertices at distance less or equal to r from a given one growth as br

[24]. This is similar to how the area Aζ(r) of a circle with radius r grows in a hyperbolic space
with curvature K = −(ln b)2, i.e. with ζ = ln b. Furthermore, any triangle formed by three
vertices in a tree is a tripod, which is the ultimate form of a thin triangle.

This tree analogy is made formal by various rigorous results that show how a hyperbolic
metric can be approximated by a tree. For instance, consider a hyperbolic space X and any
natural n. It can be shown that there exists such C > 0 that any n-element subset of X can be
mapped to the set of leaves of a finite tree so that all distances are distorted by no more than C
[9, Lemma 8.4.15].

The hyperbolic geometry of a space can be more complicated than that in a space of constant
negative curvature. The degree of negative curvature of a space at large scale can be evaluated
using the Gromov δ-hyperbolicity conditions discussed in the next section.

2.1 Slim Triangle and Four Point Conditions

Gromov δ-hyperbolicity is a measure of negative curvature in a metric space. There exist two
main approaches to measuring δ-hyperbolicity. The first approach is based on the slim triangle
condition, also known as the Rips condition.

Definition 1 (Slim Triangle Condition, [21]). Consider a geodesic metric space (X, d). A tri-
angle ABC with endpoints A, B, C ∈ X is called δ-slim if there exists δ > 0 such that any side
of the triangle ABC is within δ of the union of the other two sides. Equivalently, the inscribed
circle in the triangle has radius of no more than δ (Fig. 1b). A metric space in which all possible
triangles are δ-slim is said to be δ-hyperbolic.

This definition of δ-hyperbolicity is quite intuitive; however, it requires one to construct the
geodesics between points which can be difficult to do in practice. A computationally convenient
alternative is the four point condition that only requires the pairwise distances between points.

Definition 2 (Four Point Condition, [22]). Given any four points A, B, C, and D, in a metric
space (X, d) denote:

L := d(A,B) + d(C,D), (2)

M := d(A,C) + d(B,D), (3)

S := d(A,D) + d(B,C), (4)
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Figure 2: Four point condition: an illustration. Quadruple A, B, C, and D connected by
geodesics, with corresponding diameter L (green), M (blue), and S (red).

such that L ≥ M ≥ S, relabeling if necessary (Fig. 2). Then the points A, B, C, D satisfy the
δ-Four Point Condition for δ > 0 if

∆ :=
L−M

2
≤ δ. (5)

We say a metric space satisfies the δ-Four Point Condition and is δ-hyperbolic if all possible
quadruples satisfy the δ-four point condition.

The two definitions of δ-hyperbolicity are equivalent, differing only by a constant, as described
by the next theorem.

Theorem 1 (Equivalence of the Slim Triangle and Four Point Conditions, [8]). Suppose a metric
space (X, d) is δ-hyperbolic according to the slim triangle condition. Then (X, d) satisfies the
2δ four point condition. Conversely, suppose (X, d) satisfies the δ four point condition. Then
(X, d) is at most 6δ-hyperbolic according to the slim triangle condition.

2.2 An upper bound on ∆

The following result gives an upper limit to the value of ∆ for any given quadruple of points.

Theorem 2 (Upper bound for δ). Let A, B, C, and D be any four points in a metric space X .
Then,

∆ =
L−M

2
≤ min{d(A,B), d(C,D)}. (6)

Proof. By definition,

L−M
2

=
d(A,D) + d(B,C)− d(A,C)− d(B,D))

2

=
(d(A,D)− d(A,C)) + (d(B,C)− d(B,D))

2

=
(d(A,D)− d(B,D)) + (d(B,C)− d(A,C))

2
.

(7)
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Figure 3: Gromov δ-hyperbolicity in a 2D space of constant curvature K = −ζ2. The value of
max{∆} = max{(L−M)/2} as a function of quadruple diameter L. In a (flat) Euclidean plane
with ζ = 0, max{∆} ∝ L (blue line), which implies that there is no upper bound for ∆. In
hyperbolic planes with ζ > 0, max{∆} saturates as L increases. The existence of the maximal
value implies δ-hyperbolicity. For instance, the hyperbolic plane with ζ = 1 is δ-hyperbolic
with δ = ln 2 (green horizontal line) in accordance with [25]. The experiment uses 100,000
uniform random quadruples for each plane.

The triangle inequality gives:

d(A,D)− d(A,C) ≤ d(C,D),

d(B,C)− d(B,D) ≤ d(C,D),

d(A,D)− d(B,D) ≤ d(A,B),

d(B,C)− d(A,C) ≤ d(A,B).

This immediately implies

L−M
2

≤ min{d(A,B), d(C,D)},

which completes the proof.
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3. Estimating δ-hyperbolicity: An illustration

This section illustrates estimation of Gromov δ-hyperbolicity in Euclidean and hyperbolic spaces
of constant curvature. In order to do this, we generate multiple quadruples of points that are
uniformly distributed in a circle of radius R in either Euclidean plane or hyperbolic plane with
constant curvature K = −ζ2. The δ-hyperbolicity is then estimated as

δ = max
i
{∆i = (Li −Mi)/2},

where the maximum is taken over all simulated quadruples indexed by i. We also look at the
behavior of ∆ = (L−M)/2 as a function of various parameters of the experiment, to establish
the key qualitative patterns that distinguish flat from negatively curved space. This exercise
highlights some essential properties of δ-hyperbolicity and ensures that, in a situation with a
known answer, our statistical approach leads to correct estimation of the Gromov δ parameter.

Recall that the flat Euclidean plane corresponds to δ = ∞, an isotropic hyperbolic plane
with ζ > 0 corresponds to a finite δ, and, in particular, ζ = 1 corresponds to δ = ln 2 [25].

Our first experiment examines the behavior of ∆ = (L−M)/2 as a function of the quadru-
ple diameter L. For that, we generate 1,000 quadruples in a circle of radius R, with 100 distinct
values of R varying between R = 10−3 and R = 102 on a logarithmic scale (hence producing
100,000 quadruples). Then we calculate ∆ and L for each quadruple and plot the maximal value
of ∆(L) vs. L (using some binning for L). Appendix A discusses how to generate uniform
points in a hyperbolic circle. The results are shown in Fig. 3. In a flat Euclidean plane, ∆
increases linearly with slope 1 as a function of the diameter L, in accordance with a straightfor-
ward analytic analysis. In a hyperbolic space, δ saturates and becomes a ζ-dependent constant
as L increases, hence reflecting the curved geometry of the examined space. As the curvature
(and parameter ζ) decreases, the saturation onset shifts to larger values of L, while for smaller
values of L the curves get closer to the straight line of slope 1. This tells us that these spaces
are essentially becoming “flatter” as ζ decreases. Lastly, we see that all curves are overlapping
for small values of L, which means that when the quadruple points are very close to each other,
the effect of negative curvature is practically unnoticeable. In other words, a sufficiently small
neighborhood always has geometry of a flat (Euclidean) space.

Our second experiment examines the behavior of ∆ as a function of radius R; see Fig. 4.
For that, we generate multiple uniform quadruples in two-dimensional Euclidean space and
two-dimensional hyperbolic space with constant curvature ζ = 1, within circles of changing
radius. First, we observe that in both flat and curved spaces, there is a positive monotone relation
between R and L. This reflects the intuitive fact that large quadruples only may appear within
circles of large radius. Furthermore, for small values of radius (R ≤ 1) the flat and curved
spaces behave similarly, confirming our earlier observation that small neighborhoods always
have flat geometry. However, for larger radii (R ≥ 5) the values of maximal ∆ saturate with L
in hyperbolic space, and keep linearly growing in Euclidean space. This is consistent with our
earlier observation that curved hyperbolic geometry is best felt at large scales.

The results of this section suggest a useful benchmark – behavior of ∆ as a function of L –
against which one can assess the results for spaces with unknown geometry. This is what we do
in the next sections.
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Figure 4: ∆ in Euclidean plane (circles) and hyperbolic plane (stars) with ζ = 1. Results for
uniform quadruples within circles of different radii R. The experiment uses 50,000 uniform
random quadruples for each value of R in each space.

4. Earthquakes: Data, proximity, and networks

This section describes the earthquake catalog examined in this study, introduces the space-time-
magnitude earthquake proximity, which is the main tool of our metric analysis, and defines the
earthquake proximity networks.

4.1 Data

In this study we examine geometry of earthquakes in Southern California. We work with the
relocated catalog of Hauksson et al. [20] extended for the period 1981–2017. The catalog is
available via the SCEC Data Center1. We focus primarily on the San Jacinto Fault Zone, the
most active fault zone of the examined region. The same qualitative results are obtained for
other subregions of Southern California and other seismically active regions. The examined
catalog contains 18,972 earthquakes with magnitudes ranging from 1.50 to 5.43. For each regis-
tered earthquake i, the catalog reports its occurrence time ti; location comprised of latitude λi,
longitude φi, and depth zi; and magnitude (a logarithmic measure of energy)mi. The map of the
examined catalog is shown in Fig. 5. The time-latitude projection of the examined earthquakes
is shown in Fig. 6.

1http://www.data.scec.org/research-tools/downloads.html
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Figure 5: The study area in Southern California. Gray dots show the epicenters of earthquakes
with magnitude m ≥ 1.5 from the catalog of Hauksson et al. [20] extended to 2017. The red
dots show the examined earthquakes within the San Jacinto Fault Zone. Black lines show the
major faults.

Figure 6: The time-latitude plot of the examined earthquakes.

4.2 Gutenberg-Richter law

The main empirical observation regarding earthquakes is the Gutenberg-Richter law, which
states that the number N of earthquakes with magnitude above m is approximated by

log10N ≈ a− bm, (8)
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Figure 7: Empirical survival function P (magnitude > m) for the examined earthquakes.

where m ≥ m0 and b ≈ 1. The observed earthquakes closely follow this relation in different
geographic regions and time ranges, although the first principles behind the law remain unsettled.
Another empirical observation is that the magnitudes of consecutive earthquakes seem to be
statistically independent.

One can interpret these observations via a statistical statement that the magnitude m of an
earthquake, given m ≥ m0, follows an exponential distribution with parameter λ = b log10 e.
To see this, we rewrite the Gutenberg-Richter law as

P (magnitude ≥ m) = 10a−bm.

For the minimum magnitude m = m0 this gives 10a−bm0 = 1, which implies a = bm0.
Accordingly,

P (magnitude ≥ m) = 10bm0−bm = 10−b(m−m0) = e−b(m−m0) ln 10,

which we recognize as the survival function of an exponential distribution with parameter λ =
b ln 10. The empirical survival function for the examined earthquakes is shown in Fig. 7. A line
that corresponds to the exponential tail decay with parameter b = 1, λ = ln 10 is shown in the
figure for visual comparison. One can see that the tail of the empirical distribution (m > 2.5)
can be fairly closely approximated by the exponential distribution with λ = ln 10. The observed
deviations, in particular those seen for m < 2.5 are typical for the natural seismicity.
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4.3 Baiesi-Paczuski proximity

An asymmetric proximity ηij between an earthquake j and an earlier earthquake i is defined
using the approach of Baiesi and Paczuski [4]:

ηij =

{
tij(rij)

d10−bmi , tij > 0,
∞, tij ≤ 0,

(9)

where tij = tj − ti is the time difference in seconds between the examined events, rij is the
spatial distance in meters between the earthquake epicenters, d is the dimension of the epicenters,
and b ≈ 1 is the parameter of the Gutenberg-Richter law. In this work we use d = 2 and b = 1;
accordingly, the proximity has units of [m2·sec].

Note that this proximity is not a metric (distance) since it can be equal to zero for non-
identical earthquakes (when tij = 0 or rij = 0) and it does not satisfy the triangle inequality
(e.g., one always can connect any two points by two segments such that the points within the
first have the same time coordinate, and the points within the second have the same spatial
coordinate, resulting in zero length of the two segments). We notice that these deviations from
the proper distance are solely due to the existence of distinct points with the same space or time
coordinates. Roughly speaking, the proximity behaves as an asymmetric distance for large time
and space separations between events, and hence can be considered as an approximation to a
proper (unknown) metric in the time-space-magnitude domain of earthquakes.

An intuitive interpretation of the proximity is given in terms of a stationary homogeneous
point process with exponential magnitudes and independent time, space, and magnitude com-
ponents. Specifically, the proximity ηij between points i and j equals the expected number of
events in this process within the space-time cylinder between points i and j (i.e., the cylinder
with the time projection [ti, tj ] and space projection being the circle centered at event j and with
radius rij). Indeed, this is exactly how the Euclidean distance can be defined via a homogeneous
point process with unit intensity. For a comprehensive discussion of the proximity, we refer to
[33, 36].

The proximity η has shown instrumental in various analyses of seismicity, including scale-
free properties of earthquake networks [4], earthquake cluster identification and classification
with respect to the physical properties of the lithosphere [34, 35, 37], discriminating between
natural and human-induced seismicity [28, 37], analysis of earthquake aftershocks and fore-
shocks [35, 19, 13, 18], and understanding triggering processes in rock fracture [15].

In this work, we assume that the minimal time separation between events is 1sec and the
minimal space separation is 1m. This means that if two events occurred at a smaller separa-
tion, we artificially make it 1s and/or 1m; such cases are, however, very rare. We then use a
logarithmic version of the proximity

log10 ηij = log10 tij + d log10 rij − b(mi −mmax) ≥ 0

to quantify space-time-magnitude separation between pairs of earthquakes. All metric charac-
teristics of the earthquake quadruples reported below refer to this logarithmic quantity.
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4.4 Earthquake networks

Baiesi and Paczuski [4] have applied the earthquake proximity η to analysis of earthquake graphs
(a.k.a. networks). They considered a spanning graph whose vertices correspond, one-to-one, to
the set of examined earthquakes. Each earthquake (vertex) j is connected to a single earlier (in
time) earthquake i that minimizes the proximity ηij . It is easy to check that this construction
results in a time-oriented tree. The tree root corresponds to the first event in the catalog. Each
event (except the first one) has a single parent (earlier event to which it is connected by an edge)
and may have multiple offspring (later events to which it is connected by edges). It has been
shown that the out-degree distribution in such graphs follows a power law decay with index
γ ≈ −2.

In this work, we consider a slightly different graph construction. Specifically, we construct
graph Gη0 whose vertices correspond, one-to-one, to the observed earthquakes. The edges are
formed between the pairs of vertices with proximity η below a threshold η0. In general, a graph
Gη0 is multi-component. Each connected component of Gη0 is a subgraph such that any pair of
its vertices can be connected by a path that consists of edges each of which is shorter than η0.
Any two vertices from different connected components cannot be connected by such a path. In
this work, we consider such earthquake graphs and measure the distance between two vertices
either as the number of edges in the shortest path connecting them (unweighted, combinatorial
graph), or as the minimal total edge lengths in such a path (weighted, metric graph).

4.5 δ-hyperbolicity with respect to the earthquake proximity η

In this study, we estimate δ-hyperbolicity with respect to the earthquake proximity η. We denote
the respective hyperbolicity parameter as δη. We start by identifying transformations of time,
space, and magnitude that have no effect on the resulting hyperbolicity.

Theorem 3 (Invariance of δη). Let us utilize the earthquake proximity formula η(x, y) = log10 (t)+
d log10 r− bmy, ty ≤ tx, where t = tx− ty, r is the Euclidean distance between the two points,
and d is a constant. Then, a multiplicative transformation of space or time and an additive
transformation of magnitude have no effect of the value of δη.

Proof. First we consider a multiplicative transformation of the distance between points, r. Sup-
pose r′ = Crr for all r. Then

η′(x, y) = log10 t+ d log10Crr − bmy

= log10 t+ d log10 r − bmy + d log10Cr

= η(x, y) + d log10Cr.

(10)

Accordingly, we have for a quadruple ABCD:

L′ −M ′

2
=
η′(A,B) + η′(C,D)− (η′(A,C) + η′(B,D))

2

=
η(A,B) + η(C,D) + 2d log10Cr − η(A,C)− η(B,D)− 2d log10Cr

2

=
L−M

2
.

(11)
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Hence, a multiplicative transformation of the spatial variable r does not have an effect of the
value of δη.

Next, we consider a multiplicative transformation of the time variable, t′ = Ctt. Here we
have

η′(x, y) = log10Ctt+ d log10 r − bmy

= log10 t+ d log10 r − bmy + log10Ct

= η(x, y) + log10Ct,

(12)

and

L′ −M ′

2
=
η′(A,B) + η′(C,D)− (η′(A,C) + η′(B,D))

2

=
η(A,B) + η(C,D) + 2 log10Ct − η(A,C)− η(B,D)− 2 log10Ct

2

=
L−M

2
.

(13)

Thus, a multiplicative transformation of the time variable, t, does not have an effect of the
value of δη.

Finally, we consider an additive transformation of the magnitude variable, m′ = m + Cm.
Here

η′(x, y) = log10 t+ d log10 r − b(my + Cm)

= log10 t+ d log10 r − bmy − bCm
= η(x, y)− bCm,

(14)

and

L′ −M ′

2
=
η′(A,B) + η′(C,D)− (η′(A,C) + η′(B,D))

2

=
η(A,B) + η(C,D)− 2bCm − η(A,C)− η(B,D) + 2bCm

2

=
L−M

2
.

(15)

Thus, an additive transformation of the magnitude variable m, does not have an effect of the
value of δη. This completes the proof.

Theorem 3 ensures that the analysis of δ-hyperbolicity is independent of the units selected
for time, distance, and energy measurements.

5. Hyperbolic property of earthquakes

We now focus on δ-hyperbolicity for seismicity. We use two complementary approaches –
studying the space-time-magnitude domain of earthquakes using the earthquake proximity η,
and earthquake proximity graphs using weighted and unweighted graph distances.
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Figure 8: ∆ vs R in a synthetic earthquake catalog. The experiment uses 10,000 uniform
random quadruples for each value of R.

5.1 Synthetic catalogs

We start with analysis of synthetic catalogs, which allows us to generate quadruples, with a wide
range of spatial, time, and magnitude components. Specifically, we work with a homogeneous
Poisson model of seismicity. Every catalog is comprised of earthquakes that have uniform spa-
tial coordinates in a circle of radius R, a uniform temporal coordinate on time interval [0, T ],
and an exponential magnitude coordinate. The space, time, and magnitude components are in-
dependent. We use such synthetic catalogs to examine the dependence of ∆ = (L−M)/2 with
respect to the range of each catalog component – space, time, and magnitude.

First, we inspect the relationship between ∆ and the catalog radius R. We consider a range
of radii to generate the spatial coordinates, and for each radius we generate the time coordi-
nates uniformly on an interval [0, T ] with T = 50yrs, and the magnitude coordinates from an
exponential distribution that is truncated by a maximal magnitude mmax = 6. We create 10,000
quadruples for each radius and compute ∆ for each quadruple, see Fig. 8. We see that ∆ is
independent of the spatial extent of the catalog.

Similarly, we look at the relationship between ∆ and the time span of the catalog. We con-
sider a range of durations T to generate the time coordinate on the interval [0, T ], and for each
T we generate the spatial coordinates in a circle with constant radius R = 100km and the mag-
nitude coordinates from an exponential distribution that is truncated by a maximal magnitude
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Figure 9: ∆ vs T in a synthetic earthquake catalog. The experiment uses 10,000 uniform
random quadruples for each value of T .

mmax = 6. We create 10,000 quadruples for each upper time limit and compute ∆ for each
quadruple, see Fig. 9. We see that ∆ is independent of the time span of the catalog.

Finally, we explore the relation between ∆ and the magnitude range. We consider a range
of upper magnitude truncation boundaries mmax. For each mmax, we generate the spatial coor-
dinates in a circle with radius R = 100km and generate the time coordinates uniformly on an
interval [0, T ] with T = 50 yrs. We generate 10,000 quadruples for each maximal magnitude
value and compute ∆ for each quadruple, see Fig. 10. We observe that ∆ is only weakly depen-
dent on mmax, showing a slight increase for mmax within the interval [1, 2]. For larger values of
mmax > 2, the value of ∆ again stabilizes.

In summary, our experiments (Figs. 8, 9, 10) suggest that ∆ = (L−M)/2 can take a range
of values within the interval [0, 2.5]. The distribution of ∆ is independent of spatial and time
range of the examined earthquakes. The distribution depends weakly on the range of examined
magnitudes, and remains bounded from above for the physically realistic magnitudes (recall that
the largest recorded earthquake, that occurred in 1960 in Chile, had magnitude 9.5).

Next, we analyze the behavior of ∆ in a synthetic catalog with respect to the diameter of
the quadruple L. Recall (Fig. 3) that this behavior is closely related to the δ-hyperbolicity. We
create 100,000 quadruples where each point has spatial coordinates generated uniformly in a
circle with radius R = 100km, temporal coordinate generated uniformly on an interval [0, T ]
with T = 37yrs (to match that in the catalog of Southern California), and magnitude coordinate
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Figure 10: ∆ vs mmax in a synthetic earthquake catalog. The experiment uses 10,000 uniform
random quadruples for each value of mmax.

generated exponentially and truncated by a range of maximal magnitudes mmax. The range of
maximal magnitudes is needed to produce a wide enough range of quadruple diameters. We then
compute ∆ = (L −M)/2 for each quadruple. For each diameter L (up to some binning), we
compute the maximum of ∆. The results are shown in Fig. 11. We see that the overall trend in
both figures is similar to that of Fig. 3 in that ∆ increases for smaller values of L < 28, and then
stabilizes as L increases above L = 28. This hints at hyperbolic geometry of the earthquake
space-time-magnitude domain with the earthquake proximity η. Notice that in the earthquake
domain, we have to vary the maximal magnitude over almost two orders (0.1 < mmax < 7) to
obtain a wide range of quadruple diameters L. A fixed maximal magnitude always corresponds
to a narrow range of L, insufficient to see the increase and stabilization of ∆ = ∆(L).

5.2 Real catalog

5.2.1 Earthquake proximity

We now examine the earthquake catalog of Southern California. We extract 10,000,000 quadru-
ples from the catalog and for each quadruple compute the value of ∆ and the corresponding
diameter L. For each L, we compute the maximum and 99th, 97.5th, and 95th percentiles,
see Fig. 12. As we know from the synthetic catalog experiments, a catalog with a fixed space,
time, and magnitude range can only produce a limited range of quadruple diameters L. Accord-
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Figure 11: Maximum ∆ vs L in a synthetic earthquake catalog. The experiment uses 100,000
uniform random quadruples for each value of mmax; this results in 800,000 quadruples total.

ingly, we have to interpret the dependence ∆(L) with respect to this limited range. The range
of quadruple diameters in this experiment is 38 < L < 45. First, we observe that ∆ slightly
increases with L. This increase, however, is very different from what we observed in Euclidean
space. The slope of a linear approximation to the empirical curve ∆(L) is significantly lower
than 1, expected in a flat space. The observed value of ∆ in all quadruples is below 3. Moreover,
for the max ∆(L), we see stabilization for larger L (L > 42). This behavior is reminiscent of
the behavior of ∆ in a hyperbolic space.

5.2.2 Combinatorial networks

We now shift our focus to δ-hyperbolicity in earthquake graphs. The graph is constructed by
connecting the earthquakes (vertices) with proximity log10 ηij < 15. Then, we individually
examine each connected subgraph with more than 500 vertices. From each selected subgraph,
we select 10,000,000 random independent quadruples and compute the respective ∆ and L.

We start with the combinatorial case, where the distance between vertices is measured as the
number of edges in the minimal path between them. The results are shown in Fig. 13. Here, the
range of observed quadruple diameters is 10 < L < 45. The value of ∆ is below 5.5 for all
examined quadruples. Furthermore, ∆(L) increases with L within the interval 10 < L < 30,
and then stabilizes (end even slightly decreases for the largest quadruple diameters). The slope
of the curve ∆(L) in the steepest part is not exceeding 0.1, which is smaller than the unit slope
expected in a flat space.
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Figure 12: ∆ vs L for real earthquake catalog of Southern California. The experiment uses
10,000,000 uniform random quadruples.

5.2.3 Metric networks

The results for metric graph, where the edge length equals the respective proximity, are shown in
Fig. 14. Here, the range of quadruple diameters is 100 < L < 700. The observed values of ∆ are
bounded from above by 80. The values of ∆ increase with Lwithin the interval 100 < L < 400,
and then stabilize (end even decrease for the largest diameters). The slope of the curve ∆(L) in
the steepest part does not exceeds 0.2.

Overall, the qualitative behavior of ∆(L) in combinatorial and metric graphs is very similar
and is reminiscent of that expected in a hyperbolic space. Accordingly, we conclude that the
large-scale geometry of earthquake proximity graph is hyperbolic.

Figure 15 compares the actual earthquake proximity log10 η with that observed in combina-
torial and metric graph for multiple pairs of earthquakes. This experiment uses the proximity
threshold log10 η < 12 and considers all connected subgraphs with at least 50 vertices. The
clusters of (red) points in the plot correspond to the pairs of earthquakes separated by distinct
numbers of edges in a metric graph (between 1 and 7). For events separated by a single edge,
the actual proximity equal the graph separation; for other events, the actual proximity is smaller
than the graph separation. The plot provides basic intuition behind the change of scale be-
tween Fig. 12 that refers to the actual earthquake proximity, and Figs. 13 and 14 that refer to
unweighted and weighted graph analyses, respectively.
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Figure 13: ∆ vs L for unweighted (combinatorial) earthquake graph. The experiment uses
10,000,000 uniform random quadruples.

6. Discussion

This work examines the large scale geometric property of the space of observed earthquakes
(Fig. 5,6) equipped with the Baiesi-Paczuski proximity (9). We estimate Gromov δ-hyperbolicity
(Sect. 2.1) and find that in all conducted experiments the δ parameter is well bounded from
above, and does not tend to increase with the linear dimension of the examined region. These
properties characterize a hyperbolic metric space (Fig. 3) and suggest that a negatively curved
hyperbolic geometry underlies the space-time-magnitude distribution of seismicity.

Our estimations are done in three complementary ways – in the time-space-magnitude do-
main D of earthquakes equipped with Baiesi-Paczuski proximity η (Fig. 12), in combinatorial
proximity graphs (Fig. 13), and in metric proximity graphs (Fig. 14). That all estimations con-
sistently suggest δ-hyperbolicity contributes to the robustness of our empirical results.

The stationary and homogeneous Poisson synthetic catalog also exhibit hyperbolic property
(Sect. 5.1, Fig. 11). This suggests that the earthquake hyperbolicity is attributed to the general
properties of the Baiesi-Paczuski earthquake proximity η rather than complex clustering and
interactions of the observed earthquakes (see Fig. 6). At the same time, the values of quadruple
diameter and ∆ statistic reported in synthetic catalogs (Fig. 11) are slightly different from those
for the observed earthquakes (Fig. 12). The effects of earthquake space-time clustering and
other deviations from a homogeneous Poisson field on the hyperbolic property is an interesting
problem that will be explored elsewhere.

The suggested hyperbolic geometry of earthquake field has the following immediate conse-
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Figure 14: ∆ vs L for weighted (metric) earthquake graph. The experiment uses 10,000,000
uniform random quadruples.

quences and interpretations:
(a) The complex heterogeneous space-time-energy characteristics of earthquakes are repre-

sented via a uniform distribution of points in a hyperbolic space. This interpretation needs to be
further explored. It might be particularly useful for examining individual aftershock sequences
and/or swarms.

(b) The power law degree distributions in earthquake networks [4] is explained via the results
of Krioukov et al. [24].

(c) A useful insight is provided into the geometry of earthquake interactions [29] that can be
interpreted and studied via hyperbolic geometry and curved space-time geodesics.

(d) The hyperbolic embedding suggests a natural neighborhood of an earthquake in space-
time-energy domain. This domain can be used as a guide in analysis of aftershock/foreshock
domains, and can facilitate aftershock/foreshock/swarm identification and earthquake decluster-
ing problem.

It remains an open problem to test the suggested hyperbolicity of the earthquake space using
other models and data, and probably expand this framework to other phenomena and conceptual
models related to seismicity. The latter include solar flare statistics, rock fracture (acoustic emis-
sion experiments), and a range of models explored within the self-organized criticality (SOC)
framework.
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A. Generating uniformly distributed points in hyperbolic circle

To generate uniformly distributed points in the hyperbolic circle, we use the following result.

Theorem 4 (Uniform point in hyperbolic circle). Suppose the point with polar coordinates (r, θ)
is uniformly distributed in a hyperbolic circle of radius R centered at the origin. Then the
probability density function of r is given by

f(r) =
ζ sinh ζr

cosh ζR− 1
, 0 ≤ r ≤ R, (16)

and the probability density functionof θ is given by

f(θ) =
1

2π
, 0 ≤ θ ≤ 2π. (17)

Proof. We observe that θ ∼ Uniform[0, 2π) by circle symmetry. The distribution of the radius
is found by examining the volume of hyperbolic space available at distance r from the origin.
The area of a hyperbolic circle of radius r in a space of curvature K = −ζ2 is given by [6]:

Aζ(r) =
2π

ζ2
(cosh ζr − 1). (18)
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Accordingly, the cumulative distribution function for the radius r is given by

F (r) =
Aζ(r)

Aζ(R)
=

2π

ζ2
(cosh ζr − 1)

2π

ζ2
(cosh ζR− 1)

=
cosh ζr − 1

cosh ζR− 1
. (19)

We differentiate to get the probability density function:

f(r) = F ′(r) =
ζ sinh ζr

cosh ζR− 1
. (20)

This completes the proof.

To simulate a uniform point in a hyperbolic circle, we use a uniform random variable u ∼
Uniform[0, 1] and apply the inverse transform:

u =
cosh ζr − 1

cosh ζR− 1
. (21)

Solving for r, we get
u (cosh ζR− 1) = cosh ζr − 1, (22)

which finally gives

r = F−1(u) =
acosh((u (cosh ζR− 1) + 1))

ζ
. (23)
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geometry of complex networks. Physical Review E, 82(3), 036106

[25] Nica, B., & Spakula, J. (2014) Strong hyperbolicity. Preprint arXiv:1408.0250.

[26] Nowak, P. W., & Yu, G. (2012) Large scale geometry. EMS Textbooks in Mathematics,
European Mathematical Society, urldoi:10.4171/112

[27] Phillips, J. D., Schwanghart, W., & Heckmann, T. (2015) Graph theory in the geosciences.
Earth-Science Reviews, 143, 147–160.

[28] Schoenball, M., Davatzes, N. C., & Glen, J. M. (2015). Differentiating induced and natu-
ral seismicity using space-time-magnitude statistics applied to the Coso Geothermal field.
Geophysical Research Letters, 42(15), 6221–6228.

[29] Stein, R. S. (2003) Earthquake conversations. Scientific American, 288(1), 72–79.

[30] Telesca, L., & Lovallo, M. (2012) Analysis of seismic sequences by using the method of
visibility graph. Europhysics Letters, 97(5), 50002.

[31] Tenenbaum, J. N., Havlin, S., & Stanley, H. E. (2012) Earthquake networks based on
similar activity patterns. Physical Review E, 86(4), 046107.

[32] Weinberger, S. (2015) Book review of Large scale geometry by P.Nowak and G.Yu Bulletin
of American Mathematical Society, 52(1), 141–149.

[33] Zaliapin, I., Gabrielov, A., Keilis-Borok, V., & Wong, H. (2008) Clustering analysis of
seismicity and aftershock identification. Physical Review Letters, 101(1), 018501.

[34] Zaliapin, I., & Ben-Zion, Y. (2013) Earthquake clusters in southern California I: Identifi-
cation and stability. Journal of Geophysical Research: Solid Earth, 118(6), 2847–2864.

[35] Zaliapin, I., & Ben-Zion, Y. (2013) Earthquake clusters in southern California II: Classi-
fication and relation to physical properties of the crust. Journal of Geophysical Research:
Solid Earth, 118(6), 2865–2877.

[36] Zaliapin, I., & Ben-Zion, Y. (2016) Discriminating characteristics of tectonic and human-
induced seismicity. Bulletin of the Seismological Society of America, 106(3), 846–859.

[37] Zaliapin, I., & Ben-Zion, Y. (2016) A global classification and characterization of earth-
quake clusters. Geophysical Journal International, 207(1), 608–634.

 
2047




