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honoring the 80th birthday of Benôıt Mandelbrot.

The “fractal sunburst” is our birthday gift.

Abstract. Boolean Delay Equations (BDEs) are a novel type of semi-discrete dynamical
models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can
be classified into conservative or dissipative, in a manner that parallels the classification of
ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth
of complexity in time. They represent therewith metaphors for biological evolution or human
history.

Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as
well as more complex, fractal solution sets, such as Devil’s staircases and “fractal sunbursts.”
All the solutions of dissipative BDEs have stationary variance. BDE systems of this type, both
free and forced, have been used as highly idealized models of climate change on interannual,
interdecadal and paleoclimatic time scales.

BDEs are also being used as flexible, highly efficient models of colliding cascades in earth-
quake modeling and prediction, as well as in genetics. Some of the climatic and solid-earth
applications will be briefly illustrated.

Keywords: Boolean Delay Equations, Complexity, Dynamical Systems, Earthquakes,
El Niño/Southern Oscillation.

1 Introduction

BDEs are a novel modeling framework especially tailored for the mathematical formula-
tion of conceptual models of systems that exhibit threshold behavior, multiple feedbacks
and distinct time delays [10, 16, 17]. BDEs are intended as a heuristic first step on the
way to understanding problems too complex to model using systems of partial differential
equations at the present time. One hopes, of course, to be able to eventually write down
and solve the exact equations that govern the most intricate phenomena. Still, in climate
dynamics as well as in solid-earth geophysics and elsewhere in the natural sciences, much
of the preliminary discourse is often conceptual.
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BDEs offer a formal mathematical language that may help bridge the gap between
qualitative and quantitative reasoning. Besides, they are fun to play with and produce
beautiful fractals [37, 38], by simple, purely deterministic rules.

In a hierarchical modeling framework, simple conceptual models are typically used
to present hypotheses and capture isolated mechanisms, while more detailed models try
to simulate the phenomena more realistically and test for the presence and effect of the
suggested mechanisms by direct confrontation with observations [18]. BDE modeling
may be the simplest representation of the relevant physical concepts. At the same time
new results obtained with a BDE model often capture phenomena not yet found by using
conventional tools [47, 59, 60]. These results suggest possible mechanisms that may be
investigated using more complex models once their “blueprint” was seen in a simple
conceptual model. As the study of complex systems garners increasing attention and is
applied to diverse areas — from microbiology to the evolution of civilizations, passing
through economics and physics — related Boolean and other discrete models are being
explored more and more [8, 21, 29, 44, 57].

In this brief review, we first describe the general form and main properties of BDEs
(Section 2). Next, we illustrate some applications, to climate dynamics (Section 3) and
to earthquake physics (Section 4). The “fractal sunburst” appears in Fig. 3 of Section 3.5
and the highly intermittent, lacunary character of certain earthquake sequences is cap-
tured in Figs. 5 and 8 of Section 4. We conclude in Section 5 with some ways of enriching
our knowledge of BDEs and of the fractals they produce.

2 Boolean Delay Equations (BDE)

BDEs may be classified as semi-discrete dynamical systems, where the variables are dis-
crete — typically Boolean, i.e. taking the values 0 (“off”) or 1 (“on”) only — while time
is allowed to be continuous. As such they occupy the previously “missing corner” in the
rhomboid of Fig. 1, where dynamical systems are classified according to whether their
time (t) and state variables (x) are continuous or discrete.

Systems in which both variables and time are continuous are called flows [3, 50] (upper
corner in the rhomboid of Fig. 1). Vector fields, ordinary and partial differential equations
(ODEs and PDEs), functional and delay-differential equations (FDEs and DDEs) and
stochastic differential equations (SDEs) belong to this category. Systems with continuous
variables and discrete time (middle left corner) are known as maps [7, 22] and include
diffeomorphisms, as well as ordinary and partial difference equations (O�Es and P�Es).
In automata (lower corner) both the time and the variables are discrete; cellular automata
(CAs) and all Turing machines (including real-world computers) are part of this group
[21, 57]. BDEs and their predecessors, kinetic [53] and conservative logic, complete the
rhomboid in the figure and occupy the remaining middle right corner.
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2.1 General form

Given a system with n continuous real-valued state variables �v = (v1, v2, . . . , vn) ∈ Rn

for which natural thresholds qi ∈ R exist, one can associate with each variable vi ∈ R a
Boolean-valued variable, xi ∈ B = {0, 1}, i.e., a variable that is either “on” or “off,” by
letting

xi =

{
0, vi ≤ qi

1, vi > qi
, i = 1, . . . , n. (1)

The equations that describe the evolution of the Boolean vector �x = (x1, x2, . . . , xn) ∈
Bn due to the time-delayed interactions between the Boolean variables xi ∈ B are of the
form:




x1 = f1

(
x1(t− θ1,1), x2(t− θ1,2), . . . , xn(t− θ1,n)

)
,

x2 = f2

(
x1(t− θ2,1), x2(t− θ2,2), . . . , xn(t− θ2,n)

)
,

...

xn = fn

(
x1(t− θn,1), x2(t− θn,2), . . . , xn(t− θn,n)

)
.

(2)

The functions fi : Bn → B, 1 ≤ i ≤ n, are defined via Boolean equations that involve
logical operators and delays. Each delay value θi,j ∈ R, where 1 ≤ i, j ≤ n, is the length
of time it takes for a change in variable xj to affect the variable xi.

2.2 Some theoretical results

We summarize here a few basic theoretical results from BDE theory; their original and
complete form appears in Ghil and Mullhaupt [16].

Existence and uniqueness of solutions. Consider a BDE system and piecewise-
constant initial data over an interval equal in length to the longest delay. One can then
prove by construction the existence of a unique solution by using a lemma that shows
the absence of solutions with an infinite number of “jumps” (between 0 and 1) in any
finite-time interval [10].

“Pigeon-hole” lemma. All BDE systems that possess only rational delays can be
reduced in effect to finite cellular automata. Commensurability of the delays creates
a partition of the time axis into segments over which state variables remain constant
and whose length is an integer multiple of the delays’ least common denominator. As
there is only a finite number of possible assignments of two values to these segments,
repetition must occur, and the only asymptotic behavior possible is eventual constancy
or periodicity in time.
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Classification. Ghil and Mullhaupt [16] classified BDE systems as follows: All sys-
tems with solutions that are immediately periodic for all rational delays are conservative,
while systems that for some rational delays exhibit transient behavior before settling
into eventual periodicity are dissipative. The differential dynamical systems analogs are
conservative (e.g., Hamiltonian) dynamical systems [20, 35] versus forced-dissipative sys-
tems (e.g., the well-known Lorenz [36] system). Typical examples of conservative systems
occur in celestial mechanics [2], while dissipative systems are often used in modeling geo-
physical phenomena [15].

Asymptotic behavior. The following types of asymptotic behavior were observed in
BDE systems: (a) Fixed point — the solution reaches one of a finite number of possible
states and remains there; (b) limit cycle — the solution becomes periodic after a finite
time elapses; and (c) growing complexity — certain classes of BDEs with incommensu-
rable delays were shown to have solutions with growing complexity, as measured by the
number of jumps per unit time. This number grows like a positive, but fractional power
of time t [10], with superimposed log-periodic oscillations [16].

Approximation theorem. The following theorem facilitates numerical exploration of
solutions to BDE systems: All solutions to systems of BDEs can be approximated (with
respect to an L2-norm) for a given finite time by the periodic solutions of a nearby system
having rational delays only.

3 A BDE Model for El Niño/Southern Oscillation

The El-Niño/Southern-Oscillation (ENSO) phenomenon is the most prominent signal
of seasonal-to-interannual climate variability. It was known for centuries to fishermen
along the west coast of South America, who witnessed a seemingly sporadic and abrupt
warming of the cold, nutrient-rich waters that caused havoc to their fish harvests [11, 45].
Its common occurrence shortly after Christmas inspired them to name it El Niño, after
the “Christ child.” Starting in the 1970s, El Niño’s climatic effects were found to be far
broader than just its off-shore manifestations [11, 19]. This realization led to a global
awareness of ENSO’s significance, and an impetus to attempt and improve predictions
of exceptionally strong El Niño events [34].

3.1 Conceptual ingredients

Bjerknes [5], who laid the foundation of modern ENSO research, suggested a positive
feedback as a mechanism for the growth of an internal instability that could produce large
positive anomalies of sea surface temperatures (SSTs) in the eastern Tropical Pacific.
Using observations from the International Geophysical Year (1957-58), he realized that
this mechanism must involve air-sea interaction in the tropics.
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Compensating for Bjerknes’s positive feedback is a negative feedback in the system that
allows a return to colder conditions in the basin’s eastern part. This negative feedback
involves the ocean’s adjustment to the atmospheric forcing by means of planetary-scale
waves that are trapped near the equator by the Coriolis force: faster Kelvin and slower
Rossby waves that propagate across the ocean and ultimately cause a switch between
the warm El Niño and cold La Niña phases of a seesaw in space and time. An important
additional element is the seasonal forcing, which dictates the seasonal maxima of warming
and cooling.

3.2 Model variables and equations

The model [47] operates with five Boolean variables. The state of the ocean is depicted
by SST anomalies, expressed via a combination of two Boolean variables, T1 and T2. The
relevant anomalous atmospheric conditions in the Equatorial Pacific basin are described
by the variables U1 and U2. The latter express the state of the trade winds. For both
the atmosphere and the ocean, the first variable, T1 or U1, describes the sign of the
anomaly, positive or negative, while the second one, T2 or U2, describes its amplitude,
strong or weak. Thus, each one of the pairs (T1, T2) and (U1, U2) defines a four-level
discrete variable that represents highly positive, slightly positive, slightly negative, and
highly negative deviations from the climatological mean. The seasonal cycle’s external
forcing is represented by a two-level Boolean variable S.

The atmospheric variables Ui are “slaved” to the ocean [41, 28]:

Ui(t) = Ti(t− β), i = 1, 2. (3)

The evolution of the sign T1 of the SST anomalies is modeled according to the Bjerknes
hypothesis and involves oceanic wave adjustments:

T1(t) = {(R ∧ ¬U1)(t− τ)} ∨ {¬R(t− τ) ∧ U2(t− β)}; (4)

here the symbols ∨ and ∧ represent the binary logical operators OR and AND, respec-
tively. A Rossby-wave signal R(t) = U1(t) � U2(t) is defined via the binary Boolean
operator � that takes on the value 1 if and only if both operands have the same value.
The seasonal-cycle forcing S is given by S(t) = S(t − 1); it affects the SST anoma-
lies’ amplitude T2 through an enhancement of events when favorable seasonal conditions
prevail:

T2(t) = {[S�T1](t− β)} ∨ {[¬(S�T1) ∧ T2](t− β)}. (5)

The time t is thus measured in units of 1 year.
The model’s principal parameters are two delays: β and τ ; they are associated with

local adjustment processes and with basin-wide processes, respectively. The changes in
wind conditions are assumed to lag the SST variables by a short delay β, of the order
of days to weeks. For the length of the delay τ we adopt Jin’s [24] view of the delayed-
oscillator mechanism and let it represent the time that elapses while combined processes
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of oceanic adjustment occur: it may vary from about one month in the fast-wave limit
[25, 26, 40] — to about two years.

3.3 Model solutions

Studying the ENSO phenomenon, we are primarily interested in the dynamics of the SST
states, represented by the two-variable Boolean vector (T1, T2). To be more specific, we
deal with a four-level scalar variable

ENSO =




−2, extreme La Niña, T1 = 0, T2 = 0,
−1, mild La Niña, T1 = 0, T2 = 1,
1, mild El Niño, T1 = 1, T2 = 0,
2, extreme El Niño, T1 = 1, T2 = 1.

(6)

Governed by the model equations, the ENSO vector takes on values {−2, −1, 1, 2},
precisely in this order, thus simulating the real ENSO cycles. The cycles follow the same
sequence of states, although the residence time within each state changes as τ changes.
The period P of a simple oscillatory solution is defined as the time between the onset of
two consecutive extreme warm events, ENSO = 2. We use the cycle period definition
to classify different model solutions (see Fig. 2).

(i) Periodic solutions with a single cycle (simple period). Each succession
of events, or internal cycle, is completely phase-locked here to the seasonal cycle, i.e., the
warm events always peak at the same time of year. For each fixed β, as τ is increased,
intervals where the solution has a simple period equal to 2, 3, 4, 5, 6, and 7 years arise
consecutively.

(ii) Periodic solutions with several cycles (complex period). We describe
such sequences, in which several distinct cycles make up the full period, by the parameter
P̄ = P/n; where P is the length of the sequence and n is the number of cycles in the
sequence. Notably, as we transition from a period of three years to a period of four years
(see second inset of Fig. 2), P̄ becomes a nondecreasing step function of τ that takes only
rational values, arranged on a Devil’s staircase.

3.4 The quasi-periodic (QP) route to chaos in the BDE model

The frequency-locking behavior observed for our BDE solutions above is a signature of
the universal QP route to chaos. Its mathematical prototype is the Arnol’d circle map
[3], given by the equation:

θn+1 = θn + Ω+ 2πK sin(2πθn) (mod 1). (7)

Equation (7) describes the motion of a point denoted by the angle θ of its location on a
unit circle that undergoes fixed shifts by an angle Ω along the circle’s circumference. The
point is also subject to nonlinear sinusoidal “corrections,” with the size of the nonlinearity
controlled by a parameter K.
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We look at the winding number ω = ω(Ω, K) = limn→∞ [(θn − θ0)/n], which can be
described roughly as the average shift of the point per iteration. When the nonlinearity’s
influence is small, this average shift — and hence the average period — is determined
largely by Ω; it may be rational or irrational, with the latter being more probable due
to the irrationals’ pervasiveness. As the nonlinearity K is increased, “Arnol’d tongues”
— where the winding number ω locks to a constant rational over whole intervals — form
and widen. At a critical parameter value, only rational winding numbers are left and
a complete Devil’s staircase crystallizes. Beyond this value, chaos reigns as the system
jumps irregularly between resonances [23, 49].

The average cycle length P̄ defined for our ENSO system of BDEs is clearly analogous
to the circle map’s winding number, in both its definition and behavior. Note that the
QP route to chaos depends in an essential way on two parameters: Ω and K for the circle
map and β and τ in our BDE model.

3.5 The “fractal sunburst”: A “bizarre” attractor

As the system undergoes the transition from an averaged period of two to three years a
much more complex, and heretofore unsuspected, “fractal sunburst” structure emerges
(Fig. 3, and first inset in Fig. 2). As the wave delay τ is increased, mini-ladders build
up, collapse or descend only to start climbing up again. In the vicinity of a critical
value (τ ∼= 0.5 years), the pattern’s focal point, these mini-ladders rapidly condense and
the structure becomes self-similar, as each zoom reveals the pattern being repeated on
a smaller scale. We call this a “bizarre attractor” because it is more than “strange”:
the latter attractors occur in a system’s parameter space, for fixed parameter values, the
former is a structure that appears in our model’s phase-parameter space, like the Devil’s
staircase.

The influence of the local-process delay β, along with that of the wave-dynamics delay
τ , is shown in the three-dimensional “Devil’s bleachers” (or “Devil’s terrace,” according
to Jin et al. [28]) of Fig. 4. Note that the Jin et al. [27, 28] model is an intermediate
model, in the terminology of modeling hierarchies [18]: it is based on a system of nonlinear
PDEs in one space dimension (longitude along the equator). The Devil’s bleachers in our
BDE model resemble fairly well those in the intermediate ENSO model of Jin et al. [28].
The latter, though, did not exhibit a “fractal sunburst,” which appears, on the whole, to
be an entirely new addition to the fractal picture gallery [37, 38].

4 A BDE Model for Seismicity

Lattice models of systems of interacting elements are widely applied for modeling seis-
micity, starting from the pioneering works of Burrige and Knopoff [6], Allègre et al. [1],
and Bak et al. [4]. The state of the art is summarized in [31, 32, 42, 46, 55]. Re-
cently, colliding cascade models [12, 13, 59, 60] have been able to reproduce a wide set
of observed characteristics of earthquake dynamics [30, 48, 54]: (i) the seismic cycle;
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(ii) intermittency in the seismic regime; (iii) the size distribution of earthquakes, known
as the Gutenberg-Richter relation; (iv) clustering of earthquakes in space and time; (v)
long-range correlations in earthquake occurrence; and (vi) a variety of seismicity pat-
terns premonitory to a strong earthquake. Some of this progress is due to using BDEs
for modeling the colliding cascade phenomena.

4.1 Conceptual ingredients

Colliding cascade models [12, 13, 59, 60] synthesize three phenomena that play an im-
portant role in many complex systems: (i) the system has a hierarchical structure; (ii)
the system is continuously loaded (or driven) by external sources; and (iii) the elements
of the system fail (break down) under the load, causing redistribution of the load and
strength throughout the system. Eventually the failed elements heal, thereby ensuring
the continuous operation of the system.

The load is applied at the top of the hierarchy and transferred downwards, thus
forming a direct cascade of loading. Failures are initiated at the lowest level of the hier-
archy, and gradually propagate upwards, thereby forming an inverse cascade of failures,
which is followed by healing. The interaction of direct and inverse cascades establishes
the dynamics of the system: loading triggers the failures, and failures redistribute and
release the load. In its applications to seismicity, the model’s hierarchical structure rep-
resents a fault network, loading imitates the effect of tectonic forces, and failures imitate
earthquakes.

4.2 Model structure and parameters

Our BDE model [59, 60] acts on a ternary tree, where each element is connected to and
interacts with its six nearest neighbors: the parent, two siblings, and three children. At
each epoch a given element may be either intact or failed (broken), and either loaded
or unloaded. The state of an element e at a moment n is thus defined by two Boolean
functions se(n) ={‘intact’ or ‘failed’} and le(n) ={‘unloaded’ or ‘loaded’}. An element
of the system may switch from one state to another under an impact from its nearest
neighbors and external sources.

The dynamics of the system is controlled by the time delays between the given impact
and switching to another state. The two primary delays are the loading time ∆L necessary
for an unloaded element to become loaded under the impact of its parent, and the healing
time ∆H necessary for a broken element to recover. Failures are initiated randomly within
the elements at the lowest level.
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4.3 Model solutions

The output of the model is a catalog of earthquakes — i.e., of failures of its elements —
similar to the simplest routine catalogs of observed earthquakes:

C = (tk, mk, hk), k = 1, 2, . . . ; tk ≤ tk+1. (8)

Here tk is the starting time of the rupture; mk is the magnitude, a logarithmic measure
of energy released by the earthquake; and hk is the vector that comprises the coordinates
of the hypocenter. The latter is a point approximation of the area where the rupture
started.

The quantitative description of model earthquake sequences is given by two measures.
The first is the density ρ(n) of the elements that are in a failed state at the moment n:

ρ(n) = [ν1(n) + . . .+ νm(n)] /m. (9)

Here νi(n) is the fraction of failed elements at the i-th level of the hierarchy at the
moment n, while m is the depth of the tree. In this review, we will only consider this
measure averaged over a time interval I and will denote it by ρ(I).

The second measure is the irregularity G(I) of energy release over the time interval I;
its complete technical definition is somewhat complicated to be reproduced here; see [59].
Nonetheless, G has a transparent intuitive interpretation: it equals unity for a catalog
consisting of a single event (delta function, burst of energy), and it is zero for a marked
Poisson process (uniform energy release). Generally, it takes values between 0 and 1
depending on the irregularity of the observed energy release.

4.4 Seismic regimes

The model produces synthetic sequences that can be divided into three seismic regimes,
illustrated in Fig. 5. Regime H corresponds to high and nearly periodic seismicity (top
panel). The fractures within each cycle always reach the top level. The sequence is
approximately periodic, in the statistical sense of cyclo-stationarity. Regime I exhibits
intermittent seismicity (middle panel). The seismicity reaches the top level for some but
not all cycles. Regime L is characterized by medium or low seismicity (lower panel). No
cycle reaches the top level and seismic activity is much more constant at a low or medium
level, without the long quiescent intervals present in Regimes H and I. The location of
these three regimes in the plane of the two key parameters (∆L,∆H) is shown in Fig. 6.

4.5 Bifurcation diagram

Figure 7 illustrates the transition between regimes in the parameter plane (∆L,∆H).
Panel (a) shows a rectangular trajectory in this plane that passes through all three
regimes and touches the triple point. We single out 30 points along this trajectory; they
are indicated by small circles in the figure. The three pairs of points that correspond to



A Novel Fractal Way: A BDE Review 10

the transitions between regimes are distinguished by larger circles and marked in addition
by letters, for example (A) and (B) mark the transition from Regime H to Regime L.

We estimate the clustering G(I) and average density ρ(I) over the time interval
I = [0, 2 · 106], for representative synthetic sequences that correspond to the 30 marked
points along the rectangular path in Fig. 7a; they are shown in Fig. 7b. The values of
G drop dramatically, from 0.8 to 0.18, between points (A) and (B): this means that the
energy release switches from highly irregular to almost uniform between Regimes H and
L. This transition, however, barely changes the average density ρ of failures.

The transitions between the other pairs of regimes are much smoother. The clustering
drops further, from G = 0.18 to G ≈ 0.1, and then remains at the latter low level within
Regime L. It increases gradually, albeit not monotonically, from 0.1 to 0.8 between points
(C) and (A), on its way through regimes I and H. The increase of ∆L along the right
side of the rectangular trajectory corresponds to a fixed level of clustering, G ≈ 0.8.

The transition between regimes is illustrated further in Fig. 8. Each panel shows a
fragment of the six synthetic sequences that correspond to the points (A)–(F) in Fig. 7a.
The sharp difference in the character of the energy release at the transition between
Regimes H (point (A)) and L (point (B)) is very clear, here too. The other two tran-
sitions, from (C) to (D) and (E) to (F), are much smoother. Still, they highlight the
intermittent character of Regime I, to which points (D) and (E) belong.

5 What Next?

While the development and applications of BDEs started about two decades ago, this is a
very short time span compared to ODEs, PDEs, maps, and even cellular automata. The
results obtained so far, though, are sufficiently intriguing to warrant further exploration.

Methodologically, one might wish to explore “partial BDEs” in which the number of
Boolean variables is quite large or even infinite. These systems stand in the same relation
to “ordinary BDEs,” explored so far, as PDEs do to ODEs. One can easily imagine some
basic results for hyperbolic partial BDEs, where all the operators that connect spatially
adjacent variables are conservative, as well as for parabolic ones, where the operators
would include also some dissipative ones. Wright et al. [58] have already considered
ensemble averaging over BDE solutions with randomized initial data. It would be even
more interesting to consider the random perturbation of delays.

From the point of view of applications, BDEs have been applied fairly extensively by
now to climate dynamics [17, 33, 39, 43, 58] and are making significant inroads into solid-
earth geophysics [59, 60]. Most interesting is the recent application to the life sciences
(Oktem et al. [44]), which represents in a sense a return to the concepts of the geneticist
René Thomas, originator of kinetic logic [51, 52, 53].

It would appear that BDEs are well suited for the exploration of poorly understood
phenomena in the socio-economic realm. Moreover, the robustness of fairly regular so-
lutions in a wide class of BDEs, for many sets of delays and a variety of initial states,
suggests interesting applications to certain issues in massively parallel computations.
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Figure 1: The place of BDEs within dynamical system theory. Note the links: The
discretization of t can be achieved by the Poincaré map (P-map) or a time-one map,
leading from Flows to Maps. The opposite connection is achieved by suspension. To go
from Maps to Automata we use the discretization of x. Interpolation and smoothing
can lead in the opposite direction. Similar connections lead from BDEs to Automata
and to Flows, respectively.
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Figure 2: Devil’s staircase and fractal sunburst: A bifurcation diagram showing the
average cycle length P̄ vs. the wave delay τ for a fixed β = 0.17. Blue dots indicate
purely periodic solutions; orange dots are for complex periodic solutions; small black dots
denote aperiodic solutions. The two insets show a blow-up of the overall, approximate
Devil’s staircase between periodicities of two and three years (“fractal sunburst”) and of
three and four years (“Devil’s staircase”).
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Figure 3: Fractal sunburst: a BDE solution pattern in phase-parameter space. A blow-up
of the transition zone from average periodicity two to three years; τ = 0.4–0.58, β = 0.17.
The inset is a zoom on 0.49 ≤ τ ≤ 0.504. A complex mini-staircase structure reveals
self-similar features, with a focal point at τ ≈ 0.5.
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Figure 4: The Devil’s bleachers: A three-dimensional regime diagram showing the av-
erage cycle length P̄ , portrayed in both height and color, vs. the two delays β and τ .
Oscillations are produced even for very small values of β, as long as β ≤ τ . Variations
in τ determine the oscillation’s period, while changing β establishes the bottom step of
the staircase, shifts the location of the steps, and determines their width.
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Figure 5: Three seismic regimes: sample of earthquake sequences. Top panel – regime H
(High), ∆H = 0.5 · 104; middle panel – regime I (Intermittent), ∆H = 103; bottom panel
– regime L (Low), ∆H = 0.5 · 103. Only a small fraction of each sequence is shown, to
illustrate the differences between regimes.
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Figure 7: Bifurcation diagram for the BDE seismic model. a) Closed trajectory in the
delay plane (∆L, ∆H); b) The measures G and ρ, calculated along the parameter-plane
trajectory shown in panel (a). The transition between points (A) and (B), i.e. between
regimes H and L, is very sharp according to the irregularity of energy release (G). At
the same time, it is almost negligible by the measure ρ.
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Figure 8: Synthetic sequences corresponding to the points along the trajectory in pa-
rameter space (Fig. 7a). The panels illustrate the transitions between the regimes H
and L — panels (A) and (B); L and I — (C) and (D); and I and H — (E) and (F).
The transition from (A) to (B) is very pronounced, while the other two transitions are
smoother.


