
Statistical properties of the cluster dynamics
of the systems of statistical mechanics

A. Gabrielov, V. Keilis-Borok, Ya. Sinai, and I. Zaliapin

Introduction

L. Boltzmann was the first who tried to explain the laws of thermodynamics and kinetics
as corollaries of dynamics of large systems of interacting particles (see his classical book
[1]). In particular, Boltzmann derived the classical Boltzmann kinetic equation based
on his Stoßzahlansatz which gave the first “dynamical” explanation of irreversibility.
The Stoßanzahlsatz can be applied to any system of statistical mechanics which can
be considered as a small perturbation of an ideal gas and undergoes the so-called
Boltzmann-Grad limit transition (see [L1]) when the length of the free path is of the
order of the size of the whole system. O. Lanford (see [3]) gave the first mathematical
proof of the local existence theorem of the solutions of the Boltzmann equation where he
showed the convergence of correlation functions to solution of the Boltzmann equation.

There were many attempts to extend the conditions under which the Boltzmann
kinetic equation or its generalization works. In this connection we would like to mention
the book by Bogolyubov [2] where Bogolyubov stressed several times the idea that in
the gaseous phase when the interaction between the particles is short-ranged the system
can be decomposed onto finite clusters so that during some random interval of time each
cluster moves independently on other clusters as a finite-dimensional dynamical system.
After such random time the system can be decomposed again on other dynamically
independent clusters and so on. It is natural to call this type of dynamics as cluster
dynamics.

The cluster dynamics was shown to exist in the one-dimensional systems of statis-
tical mechanics in [4]. Consider the infinite system of one-dimensional particles with
pair-wise interaction having a hard core and short range. Assume that the distribution
of particles is given by the Gibbs canonical distribution. In the one-dimensional case in
the thermodynamical limit there is no difference between canonical and grand canoni-
cal distributions. According to these distributions in a typical situation on any interval
Œ�R; R� there are empty intervals of the length O.ln R/ having at t D 0 no particles.
On the other hand, the velocities of the particles have Gaussian distributions. Therefore
for any T the velocities of the particles on Œ�R; R� grow typically as O.

p
ln R/. It

shows that for sufficiently large R particles cannot go from one end-point of an empty
interval to the other one. In other words for any T in the finite-dimensional dynam-
ics particles in the domains bounded by empty intervals do not interact with external
particles.

This gives cluster dynamics. The accurate proof requires some probabilistic esti-
mates which show that the velocities do not become large during the finite-dimensional
dynamics (see [4]). All these ideas were generalized to the multi-dimensional case and
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low density, i.e. to the gaseous phase in [5].
The infinite system of equations of motion of particles .xi ; vi / of mass m D 1 has

the form
dxi

dt
D vi ;

dvi

dt
D �

X
j

@U.jqi .t/ � qj .t/j/
@qi

(1)

In the paper by E. Presutti, M. Pulvirenti and B. Tirozzi [6] the authors proved the
general existence theorem for solutions of (1) for any limit Gibbs distribution with
arbitrary density and inverse temperature. Their method is based upon the reduction of
(1) to the corresponding integral equation and the proof of existence of solutions of the
integral equation.

The most general results were obtained by R. Dobrushin and J. Fritz (see [7]). They
described a large subset in the phase space of (1) for which they proved 1) the existence
theorem of solutions of (1) and 2) the fact that the probability of this subset with respect
to any natural Gibbs distribution is 1. This gives the possibility to describe the dynamics
in the space of Gibbs distributions.

Recently, it turned out that the concept of cluster dynamics has a wider domain of
applications in such fields as plasma physics, geophysics and others (see [20], [21],
[23], [16]). In this connection it is interesting to study the distributions of various
characteristics of cluster dynamics, such as the distribution of the size of the clusters,
the statistics of particles in a cluster and others. The whole set of problems resembles
problems of percolation theory but seems to be more difficult than the percolation theory
because it involves dynamical characteristics. There is no hope that something can be
done analytically. On the other hand, the use of computers opens wide possibilities
in getting numerical results. The corresponding experiments were performed recently
and the results are presented below in this paper. We want to stress the appearance of
new critical indices which are special for cluster dynamics and presumably are different
from similar ones in percolation theory.

In this paper we analyze numerically cluster dynamics in a simplest system – a
frictionless elastic billiard. The model and cluster rules are described in Section 1. We
report a phase transition in the cluster formation process in Section 2 and describe how
it depends on the model parameters in Section 3. Also, we study how the size of the
maximal cluster in a finite system scales with the system size (Section 4). Section 5 de-
scribes possible applications of cluster dynamics. Details of our numerical simulations
are given in Section 6.

1 Model

The results in this paper refer to an elastic frictionless billiard on a square table. Namely,
we consider N balls of mass m D 1 and radius R placed within the region T D f.x; y/ W
jxj � L=2; jyj � L=2g. We will call N the size of the billiard. Each ball moves
without friction with constant velocity vi D .vi

x; vi
y/, i D 1; : : : ; N until it collides

with a wall or another ball. All collisions are elastic, which means that the total energy
E D PN

iD1 m jvi j2=2, jvi j2 D .vi
x/2 C .vi

y/2, of the system remains constant, the total
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momentum p D PN
iD1 m vi is not affected by ball collisions, and in wall collisions

the ball’s reflection and incidence angles are the same. A useful characteristic of the
billiard is the density of balls:

� D N � R2

L2
: (2)

We will need the notion of �-cluster [4], which is a group of balls that have affected
each others dynamics during the time interval of duration �. Formally, we call two
balls �-neighbors at epoch t if they collided during the time interval Œt � �; t�. Any
connected component of this neighbour relation is called a �-cluster at epoch t . This
definition ensures that each ball has collided with at least one ball from its �-cluster
within the time interval Œt � �; t�. The mass of a cluster is the total mass of its balls.
We denote by N�.t/ the total number of �-clusters at instant t , and by M i

�.t/ the mass
of the i -th largest cluster. Thus, the mass of the maximal �-cluster is M 1

�.t/, of the

second largest cluster M 2
�.t/, of the smallest cluster M

N�

� .t/, etc.
Obviously, at � D 0 there exist N clusters of mass m, each corresponding to an

individual ball. As � increases, the balls start to collide so the number of clusters
becomes smaller while their masses increase. In this note we only consider a situation
when � D t , that is we deal with all the clusters that have been formed during the time
interval Œ0; ��. This allows us to drop the dependence on t and work with the number
of clusters N�, maximal cluster of mass M 1

�, etc.
In this paper we focus on the time-dependent distribution (density) ft .M/ of cluster

sizes (masses). In a numerical study, to obtain a sample of n clusters at epoch t one
runs the model n times, each time choosing a single cluster at epoch t . A standard
practice in stochastic geometry suggests to choose the cluster nearest to the origin
(that is the cluster that contains the ball nearest to the origin). It happens that the
computational load associated with this procedure is prohibitive for our purposes. To
make the computations workable, we approximate the cluster size distribution ft .M/

using the entire cluster population from a single realization of the model, which has
density gt .M/. For large N , ft .M/ becomes an area-biased version of gt .M/, since
large clusters have a better chance to lie closer to the origin than smaller ones; and the
two distributions are connected via [11]:

ft .M/ D M gt .M/R
M gt .M/ dM

: (3)

The results in this paper refer to gt .M/.

2 Phase transition in dynamical clustering

To study the dynamics of clusters we have considered models with 10�6 � � � 10�1,
and 10 � N � 104. We run each model until the instant when a cluster of mass
0:95 � N is formed.

Figure 1 shows fractional masses �i
� D M i

�=N of clusters as a function of time
when they have been formed; this figure refers to � D 10�3, N D 104. Here we
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Figure 1. Fractional cluster masses �i
�

D M i
�

=N as a function of time when they have been
formed in a model with � D 10�3, N D 104. Each point corresponds to a single cluster. The
horizontal lines at the lower part of the figure are formed by a multitude of clusters of mass
M D 2 (lowest line), M D 3 (second line), etc. The point .0; 10�4/ refers to N D 104 balls,
each of which forms a cluster of unit mass at t D 0. Notice the dramatic change in the cluster
mass distribution at the moment tc � 510 depicted by blue vertical line. Three vertical lines
correspond to the three cluster size distributions in Figure 2.

see the following generic qualitative picture that has been observed for all the models
considered. At � D 0, we start with N clusters of mass m. As the model evolves,
clusters of increasingly larger masses are formed and the total number of clusters
decreases. For some period of time, 0 � t � tc (for this model, tc � 510) the cluster
mass distribution has no notable gaps, in particular the size of the largest cluster does
not exceed significantly the size of the second largest cluster. At t D tc one observes
a sharp qualitative change in the cluster formation process. There appears a distinctive
largest cluster, which creates a gap in the mass distribution between the largest cluster
and the rest of the clusters. Notably, this change happens when the largest cluster is
still relatively small: less than 10% of the total system mass.

It will be convenient to define formally the time instant tc that corresponds to the
change in cluster formation. We define here tc as the instant after which there are no
clusters larger than M 1

tc
:

tc D infft W M 1
t > M i

s ; s > t; i > 1g: (4)

We will refer to tc as critical time. Note that this definition uses the information from
the times t > tc (i.e., tc is not a stopping time), so it cannot be used for operational
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detection of tc . It would be useful to have an alternative definition which will use only
the information available prior tc .

Figure 2 shows the empirical cluster mass density for the model with � D 10�3 and
N D 104 at three time instants depicted by vertical lines in Figure 1.
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Figure 2. Cluster size distribution at three instants depicted by vertical lines in Figure 1. At
t < tc (green triangles) distribution can be approximated by a power law with exponential taper
at the tail; at t � tc (blue balls) it is a pure power law; at t > tc (red squares) it is a tapered
power law plus a ı function at the largest cluster. To produce this figure we used 50 independent
realizations of the model with � D 10�3, N D 104.

For t � tc the cluster mass distribution gt .M/ is well described by a power law
with an exponential taper:

gt .M/ D M �ˇ exp

�
� M

�.t/

�
: (5)

Here ˇ � 5=2, and the taper strength is determined by �.t/: �.t/ � M leads to almost
an exponential distribution, while �.t/ � M to a pure power law. Our simulations
suggest that �.t/ is monotone increasing with �.tc/ D 1, so that gt .M/ transforms
from exponential at small times t � tc to a pure power law at the critical epoch tc .
One can readily see the scenario that characterizes systems with phase transition of
second kind. In statistical mechanics, equation (5) describes the correlation function
�.r/ of a system (e.g., Potts model) near the critical point. A similar power law with
exponential taper was suggested for the mass distribution of clusters in a percolation
model [12], [13] as the percolation instant approaches; for rupture sizes in a colliding
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cascades model of earthquakes [14], [15], [17]; for real ruptures in steel samples [16],
etc. For t > tc the distribution is decomposed into two components: A ı-function at
the mass of the largest cluster, and the tapered power law (5) for the rest of the clusters
with �.t/ monotone decreasing for t > tc .

This picture is observed for all the models considered independently of the billiard
density � and size N . In particular, the critical index ˇ � 5=2 is universal: Figure 3
show the cluster mass distribution at tc for seven different models with N D 5 � 103

and � D 10�1; 10�2; : : : ; 10�7.
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Figure 3. Power-law cluster size distribution at critical instant tc for seven models with fixed N D
5 � 103 and � D 10�1; 10�2; : : : ; 10�7. The distribution at critical instant tc is characterized
by a universal index ˇ D 5=2.

3 Scaling of critical time and mass

Here we study how the critical instant tc and the fractional mass �c WD M 1
tc

=N of the
largest cluster at tc depend on the billiard density �. For that we run multiple (from 10
to 1000) realizations of the billiard for � D 10�1; 10�2; : : : ; 10�7 and N D 5 � 103.
The averaged values of tc and �c are shown in Figures 4, 5 as functions of �. These
results support the following asymptotic relations, which give very good approximation
for � < 10�2:

tc.� j N D 5 � 103/ � 0:4 ��1; �c.� j N D 5 � 103/ � 0:07; as � ! 0: (6)
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A more detailed analysis (not shown) indicates that the large density correction for
critical time is given by:

tc.� j N D 5 � 103/ D 0:4 ��1
�
1 C �0:4 C o.�0:4/

�
; � ! 0: (7)
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Figure 4. Scaling of critical time tc with the billiard density � at fixed N D 5 � 103.
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Figure 5. Critical mass �c as a function of the billiard density � at fixed N D 5 � 103.
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4 Size of the maximal cluster

Here we consider the dynamics and scaling of the maximal cluster. Figure 6 shows the
dynamics of the fractional mass �1

� D M 1
�=N of the largest cluster averaged over 10

to 1000 realizations of a billiard; it refers to ten models with 10 � N � 104 and fixed
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Figure 6. Fractional mass �1
�

D M 1
�

=N of the maximal cluster as a function of � for ten
models with fixed � D 10�3 and 10 � N � 104 (each line corresponds to a distinct value of N ).

� D 10�3. By construction, we have the following limiting relations:

M 1
0 D 1; M 11 D N: (8)

Next we study in detail the scaling of M 1
� as a function of N and �. Figure 7 shows

M 1
� as a function of N at eight time instants between � D 0 and � D 1400 � 3 � tc .

One can see a gradual transition between the limiting scalings (8). Approximately
linear form of the plots suggests that we have a power law dependence

M 1
� D c.�/ N ˛.�/; (9)

with c.0/ D c.1/ D 1, ˛.0/ D 0, and ˛.1/ D 1. Maximum likelihood estimations
of c.�/ and ˛.�/ for 0 � � � 1400 are shown in Figure 8. At critical time we have
˛.tc/ � 2=3.

A more detailed analysis (not shown) indicates that at initial times (0 < t < tc=3)
the maximal cluster size in a finite system of size N is proportional to log10 N :

M 1
� D ˛0.�/ log10.N / C c0.�/: (10)
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Figure 7. Mass M 1
�

of the maximal cluster as a function of billiard size N – each line corresponds
to a distinct value of �. Experiment is done under fixed � D 10�3.

There exists a natural connection between this transition from logarithmic to power
scaling of the maximal cluster size and from exponential to power tail of the cluster
size distribution (see equation (5) and Figure 2). Indeed, suppose that cluster sizes
are independent and identically distributed with distribution function F.x/ and density
f .x/. Then the size of the maximal among N clusters has distribution Fmax.M/ D
F N .M/ and density fmax.M/ D N f F N �1; and the most probable size M � of the
maximal cluster is given by the finite solution of d

dM
fmax.M �/ D 0: It is readily

verified that

F.M/ D 1 � e�� M ) M � D ln.N /

	
/ ln.N /; (11)

F.M/ D 1 � M �b ) M � D
�

N b C 1

b C 1

�1=b

/ N 1=b C o.N 1=b/: (12)

The exponential tail of the cluster size distribution at t < tc thus justifies the
logarithmic dependence (10) of the maximal cluster size on N ; while the power law
cluster size distribution around tc explains the power law scaling (9). Equations (9)
and (12) suggest b D 1=˛. We notice that the index b D ˇ � 1 � 3=2 of the cluster
size distribution observed at tc (see Figure 3) is indeed equal to 1=˛ � 1=0:66 � 3=2

observed at tc � 510 in the top panel of Figure 8.
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Figure 8. Parameters ˛ and c of scaling law (9) as functions of time �. Each line in Figure 7
corresponds to one point in each panel of this figure. To produce this figure we used models with
fixed � D 10�3, and 10 � N � 104.

5 Possible applications of cluster dynamics

We have demonstrated in Section 2 (Figures 1, 2) above that the distribution of the
cluster size in the elastic frictionless billiard changes as the phase transition approaches.
A similar phenomenon has been observed in seismicity and economics, where it is
related to the approach of an appropriately defined critical event. Below we briefly
discuss cluster dynamics in seismicity. More detailed discussion and further examples,
suggesting universality of that phenomenon, are given in [19], [20], [21].

Seismicity. An earthquake is an episode of rupture and discontinuous displacement in
the outer shell of solid Earth, called the lithosphere. Generally speaking, nucleation of
a single earthquake is controlled by the clash between stress- and strength-fields in its
vicinity. Both these fields, particularly the strength, are in turn controlled by a multitude
of processes generating strong instability. Among them are interactions with other
earthquakes, mechanical and chemical interactions of rocks and fluids, phase transitions
of minerals, heat flow, non-linear deformations and fracturing, interactions between
geospheres, incompatibility between the structure and kinematics, etc. These processes
evolve in multiple scales, from global to microscopic ones. Altogether they turn the
lithosphere into a hierarchical dissipative non-linear (“complex”) system. Fundamental
equations connecting seismicity with this set of intertwined mechanisms are not yet
known.
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Scale invariance. Size of an earthquake is usually defined as its magnitude m – a loga-
rithmic measure of the energy E released by the earthquake [8] (m D 2=3 log10 ECC ).
About 106 earthquakes with m > 2 are recorded annually worldwide, and once in a
few years the largest earthquakes with m > 8 occur. The magnitude distribution of
earthquakes is known in seismology as the Gutenberg–Richter law [9], [10]:

log10 .N.m// D a � bm: (13)

Here N.m/ is the average annual number of earthquakes with magnitude m or more,
b � 1. The Gutenberg–Richter law emerges only after considerable averaging of
seismicity over time and territory and gives a good description for small to medium
magnitudes. At the relatively large magnitudes, the size distribution bends downwards.
The linear relation (13) is equivalent to the power law distribution of earthquake energy:

N.E/ / E�ˇ ; ˇ � 2=3: (14)

To accommodate the downward slope of the energy distribution at larger magnitudes,
it can be approximated by an exponentially tapered distribution:

N.E/ / E�ˇ exp .E=E0/ : (15)

Strong earthquakes are usually defined as outliers in observed distributions – “ex-
treme events”. Such earthquakes are associated with abrupt overall changes of seis-
micity, and, qualitatively, with phase transitions.

Clustering and phase transitions. Earthquakes come in a hierarchy of clusters
formed in a broad range of time-, space-, and magnitude scales, from microscopic
to global ones. Clusters emerge, coalesce, split, migrate, and alternate with seismic
quiescence (“anti-clusters”). As a strong earthquake approaches, distribution of cluster
sizes tends to change in favor of larger clusters. Similarly, the magnitude distribution of
individual earthquakes changes in favor of larger magnitudes. In particular, the distri-
bution (15) changes similarly to the cluster size distribution (5) described in Section 2.
These phenomena have been found in real seismicity of numerous regions worldwide
as well as in numerical models of seismicity. They were used in several earthquake
prediction algorithms, self-adjusting to statistical properties of seismicity in different
regions [21]. Statistical significance of predictions based on that kind of clusters is
demonstrated in [23].

Similar changes in scaling relations have been observed before American economic
recessions and some socio-economic extreme events [20].

6 Parameters and simulation details

We have simulated the billiard for 1 � N � 104 and 10�8 � � � 1=2. The table
size L was kept constant, while appropriate values of R for any given � and N were
calculated via (2). We put m D 1 and T D 1=kB .
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Recall that the Maxwellian velocity distribution of an ideal gas in D-dimensional
space is given by

f .v/ D
�

m

2 � kB T

�D=2

exp�m jvj2=.2 kB T /; (16)

where v D .v1; : : : ; vD/, jvj2 D v2
1 C � � � C v2

D , kB is Boltzmann constant, T tempera-
ture, and m particle mass. Accordingly, the speed s WD jvj of particles in a 2D system
is given by Chi-distribution with two degrees of freedom:

p.s/ D s

r
m

kB T
exp�m s2=.2 kB T / : (17)

We have verified that any (non-degenerate) initial velocity distribution eventually trans-
forms to the Maxwellian distribution (16). The rate of convergence is rather fast; say,
the isotropic uniform initial velocity distribution for N D 500 balls transforms into
the Maxwellian distribution after 2 000 ball collisions, which is 4 collisions per ball on
average.

We start all our models with the Maxwellian velocity distribution (16) and uniform
placement of the balls. Specifically, the balls are placed on the table one-by-one. The
center of the first ball is uniformly distributed within the region

T 0 D f.x; y/ W jxj < L=2 � R; jyj < L=2 � Rg ;

which ensures that it does not intersects with the table walls. The center of .k C 1/-th
ball, k 	 1, is uniformly distributed within the region T 0nBk , where Bk is the union
of already placed balls; this ensures the new ball does not intersects with existing balls
and the walls.
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