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Predictability of extreme events
in a branching diffusion model

Andrei Gabrielov, Vladimir Keilis-Borok,
Sayaka Olsen, and Ilya Zaliapin

10.1 Introduction

Extreme events are the most important yet least understood
feature of natural and socioeconomic complex systems. In
different contexts these events are also called critical tran-
sitions, disasters, catastrophes, or crises. Among examples
are destructive earthquakes, El Niños, heat waves, electric
power blackouts, economic recessions, stock-market
crashes, pandemics, armed conflicts, and terrorism surges.
Extreme events are rare, but consequential: they inflict the
lion’s share of the damage on population, economy, and
environment. This chapter is focused on the theoretical
foundations of predicting individual extreme events. The
prediction problem is pivotal both for the fundamental
understanding of complex systems and for disaster
preparedness (e.g., Keilis-Borok and Soloviev, 2003;
Sornette, 2004; Albeverio et al., 2005).

There exist several well-developed approaches to
prediction of extreme events including classical
Kolmogorov–Wiener extrapolation of time series (Kolmo-
gorov, 1941a,b; Wiener, 1949), linear (Kalman–Bucy)
(Kalman and Bucy, 1961) and non-linear (Kushner–Zakai)
(Kushner, 1964; Zakai, 1969; Chow, 2007) filtering,
sequential Monte-Carlo methods (Doucet et al., 2001),
and the extreme-value theory (Embrechts et al., 2008).
The approach to prediction described in this chapter is
complementary to the above methods. The need for an
alternative approach is dictated by a non-standard formula-
tion of the prediction problem, where one is particularly
interested in the future occurrence times of rare events
rather than the complete unobserved state of the system
in continuous time. We notice, accordingly, that often the
easily observed extreme events cannot be defined as the
instants of threshold exceedance by the observed physical
or economical fields, like air temperature or asset price.
A paradigmatic example is an earthquake initiation time,

which is determined by the complex interplay of stress and
strength fields in the heterogeneous Earth lithosphere. The
physical theory for spatio-temporal evolution of these
fields is still in its infancy, their values can hardly be
measured with the existing instruments, or predicted using
the available statistical methods. At the same time, earth-
quakes are readily defined, measured, and studied.

Prediction here is based on analysis of the observable
permanent background activity of the complex system. We
look for premonitory patterns, i.e., particular deviations
from long-term averages that emerge more frequently as
an extreme event approaches. These patterns might be
either perpetrators contributing to triggering an extreme
event, or witnesses merely signalling that the system
became unstable, ripe for a disaster. An example of a
witness is the proverbial ‘straws in the wind’ preceding a
hurricane.

The following types of premonitory patterns have been
established by exploratory data analysis and numerical
modelling: (i) increase of background activity; (ii) devi-
ations from self-similarity, i.e. a change of the size
distribution of events in favour of relatively strong yet
subextreme events; (iii) increase of event clustering; and
(iv) emergence of long-range correlations. Solid empirical
evidence for the existence of these patterns in seismology
and other forms of multiple fracturing has been accumulated
since the 1970s (Haberman, 1981; Mogi, 1981; Aki, 1985;
Keilis-Borok and Shebalin, 1999; Sykes et al., 1999;
Keilis-Borok and Soloviev, 2003). Importantly, these
patterns are universal, common for complex systems of
distinctly different origin. Similar premonitory patterns have
been observed in socio-economic systems (Keilis-Borok
et al., 2000, 2005), dynamic clustering in elastic billiards
(Gabrielov et al., 2008), hydrodynamics, and hierarchical
models of extreme event development (Narkunskaya and
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Shnirman, 1990; Newman et al., 1995; Blanter et al., 1997;
Gabrielov et al., 2000; Zaliapin et al., 2003a,b). We discuss
here a general mechanism that reproduces these universal
premonitory patterns.

We focus in particular on premonitory deviations from
self-similarity. Self-similarity is one of the most prominent
features of complex systems. A canonical example is a
power-law (self-similar) distribution of system observ-
ables, whose remarkable feature is the inevitability of
extremely large events that dwarf numerous smaller events.
The power-law distribution is well known under different
names in such diverse phenomena as inertial-range self-
similarity in turbulence (Kolmogorov–Obukhov laws)
(Kolmogorov, 1941a; Obukhov, 1941; McWilliams,
1990; Frisch, 1996), energy released in an earthquake
(Gutenberg–Richter law) (Gutenberg and Richter, 1944;
Ben-Zion, 2003), word usage frequency in a language
(Zipf law) (Zipf, 1965), allocation of wealth in a society
(Pareto law) (Pareto, 1897; Klass et al., 2006), war casual-
ties (Richardson law) (Richardson, 1960), number of
papers published by a given scientist (Lotka law) (Lotka,
1926), mass of a landslide (Malamud et al., 2004; Brunetti
et al., 2009), stock price returns (Mandelbrot and Taylor,
1967; Plerou and Stanley, 2008; Gabaix et al., 2003),
number of species per genus (Burlando, 1990), and many
others (Newman, 1997, 2005; Albert and Barabasi, 2002;
Mandelbrot, 1983; Turcotte, 1997). An important para-
digm of self-organised criticality (Bak et al., 1988;
Turcotte, 1999) that is demonstrated by sand-pile (Dhar,
1990), forest-fire (Drossel and Schwabl, 1992), and
slider-block (Burridge and Knopoff, 1967; Olami et al.,
1992; Rundle and Klein, 1993) models and their numerous
ramifications has been introduced in order to understand
dynamic processes whose only attractor corresponds to
self-similarity (criticality) of the size distribution of
appropriately defined events.

Exact self-similarity, as well as many other universal
properties, however, is only an approximation to (or a
mean-field property of) the observed and modelled
systems; at each particular time moment the distribution
of event sizes deviates from a pure power-law form. We
show in this chapter how to use such deviations for under-
standing the dynamics of a complex system in general and
the occurrence of extreme events in particular.

The rest of the chapter is organised as follows. We
informally outline our model and the corresponding
prediction problem in Section 10.2. A formal model descrip-
tion is given in Section 10.3. Section 10.4 summarises the
study’s results most relevant to the prediction problem.
Section 10.5 derives the spatio-temporal model distribution
as a function of the control parameter. Section 10.6 uses
these results to find spatio-temporal deviations of the
event size distribution from its mean-field form. Results

of numerical experiments are illustrated in Section 10.7. In
Section 10.8 we further discuss the relation of our results
to prediction of extreme events. Proofs and necessary
technical information are collected in Appendices.

10.2 Model outline and prediction problem

The model combines external driving ultimately responsible
for the occurrence of events, including the extreme ones, a
cascade process responsible for redistribution of energy
(or another appropriate physical quantity such as mass,
moment, stress, etc.) within the system, and spatial dynam-
ics. We first outline the process of populating a system space
Ω with particles of discrete ranks and then proceed with the
definition of the observation space and events. We assume
that Ω is an n-dimensional Euclidean space.

A direct cascade (branching) within a system starts with
consecutive injection (immigration) of particles of the
largest possible rank, rmax, into the origin 02Ω, which
we call the source. After injection, each particle diffuses
freely and independently of the others across the space Ω.
Eventually, it splits into a random number of particles of
smaller rank, rmax � 1, each of which continues to diffuse
from the location of the parent and independently of the
other particles. These particles split in their turn into even
smaller particles, and so on.

At each time instant t � 0, observations can be done on
a subspaceRt � Ω. In this chapter we assume thatRt is an
affine subspace of dimension d < n. An observed event
corresponds to an instant when a particle crosses the sub-
space of observations. Each event is characterised by its
occurrence time t, spatial location x 2 Rt within the obser-
vation space, and rank r. Model observations at instant t
thus consist of a collection of events Ct ¼ ðti � t, xi, riÞ,
i � 1, referred to as the catalogue. An extreme event is
defined as a sufficiently large, although not necessarily the
largest, event, r � r0, where r0 is a rank threshold.

Importantly, the location of Rt within Ω is (a) unknown
to an observer, and (b) time-dependent. One can interpret
this as movement of the observation space relative to the
source, movement of the source relative to the observation
space, or a combination of the two. A principal goal of an
observer is to assess the likelihood of the occurrence of an
extreme event using the catalogue Ct. It is readily seen that
the probability of an extreme event increases as the obser-
vation space approaches the source and achieves its max-
imal value when the source belongs to the observation
space, 0 2 Rt. The distance between the observation sub-
space and the source thus becomes a natural control par-
ameter and allows one to reduce the prediction problem to
estimating the distance to the source. This latter problem is
the focus of the chapter.
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As the observation subspace approaches the source, the
intensity of the observed events increases, larger events
become relatively more frequent, and clustering and long-
range correlations become more prominent (see Fig. 10.1
and Sections 10.4, 10.8). The emergence of these patterns,

each individually and all together, can be therefore used to
forecast an approach of a large event; indeed, such a
prediction should be understood in a statistical sense. We
focus on quantitative description of two of these patterns,
intensity increase and deviations from self-similarity,
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Figure 10.1. Example of a three-dimensional model population. Different panels show two-dimensional subspaces of the model three-
dimensional space at different distances jxj to the origin. Model parameters are μ ¼ λ¼ 1, D ¼ 1, B¼ 2. Circle size is proportional to the
particle rank. Different shades correspond to populations from different immigrants; the descendants of earlier immigrants are a lighter
shade. The clustering of particles is explained by the splitting histories. Note that, as the origin approaches, the particle activity
significantly changes, indicating the increased probability of an extreme event.
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for a classical branching process formally introduced in the
next section.

We emphasise that the location and dynamics of the
observation space Rt within Ω depend on details of a
particular system of interest and may be hard to estimate
or model. Important points of this chapter are that (i) the
information about this unknown dynamics can be summar-
ised by a scalar value of the control parameter (distance
between the observational subspace and the origin); and
(ii) knowledge of the control parameter is sufficient to
solve the prediction problem.

Finally, it is important to mention that we do not use
direct cascade as a dynamical model of event formation,
which would imply that large events cause smaller ones.
We merely use this analytically tractable approach to create
a hierarchical network of spatially distributed particles.
A dynamic interpretation of the latter will depend on a
particular application, and may include inverse cascading
or other physically relevant processes.

10.3 Model formulation

We consider an age-dependent multi-type branching
diffusion process with immigration in Rn. The system
consists of particles, each of which belongs to a generation
k ¼ 0, 1,. . .. Particles of zero generation (the largest ones)
appear in a system as a result of external driving (forcing);
we will refer to them as immigrants. Particles of any other
generation k > 0 are produced as a result of the splitting of
the particles of generation k � 1. Immigrants (k ¼ 0) are
born at the origin x:¼(x1,. . .,xn) ¼ 0 at a constant rate μ;
that is, the probability for a new immigrant to appear
within the time interval of length Δt is μΔt þ o(Δt) as
Δt ! 0. Accordingly, the birth instants form a homoge-
neous Poisson process with intensity μ. Each particle lives
for some random time τ and then transforms (splits) into a
random number β of particles of the next generation. The
probability laws of the lifetime τ and branching β are
generation-, time-, and space-independent. We assume that
new particles are born at the location of their parent at the
moment of splitting.

The particle lifetime has an exponential distribution:

GðtÞ :¼ Pfτ < tg ¼ 1� e�λ t, λ > 0: ð10:1Þ
The conditional probability that a particle transforms into
k � 0 new particles (0 means that it disappears) given
that the transformation took place is denoted by pk. The
probability generating function (pgf) for the number β of
new particles is thus

hðsÞ ¼
X
k

pk s
k : ð10:2Þ

The expected number of offspring (also called the branch-
ing number) is B :¼ E(β) ¼ h0(1) (e.g., Athreya and Ney
(2004) Chapter 1).

Each particle diffuses in Rn independently of other
particles. This means that the density p(x, y, t) of a particle
that was born at instant 0 at point y solves the equation

∂p
∂t

¼ D
X
i

∂2

∂x2i

 !
p � D△xp ð10:3Þ

with the initial condition p(x, y, 0) ¼ δ(x � y). The
solution of (10.3) is given by Evans (1998):

pðx, y, tÞ ¼ 4 π D tð Þ�n=2exp � jx� yj2
4 D t

( )
, jxj2 ¼

X
i

x2i :

ð10:4Þ
Accordingly, the density of each particle, given that it is
alive at the instant t, is ϕ(x, t) :¼ p(x, 0, t). Naturally, the
positions of the particles produced by the same immigrant
are correlated. This can be reflected by the joint distribu-
tion of pairs, triplets, etc.

The model is specified by the following parameters:
immigration intensity μ > 0, branching intensity λ > 0,
diffusion constant D > 0, and branching distribution {pk},
which will be often represented by its pgf h(z) or simply by
the branching number B. An appropriate choice of the
temporal and spatial scales allows one to assume μ ¼ 1
and D ¼ 1.

It is convenient to introduce particle rank r :¼rmax � k
for an arbitrary integer rmax and thus consider particles of
ranks r � rmax. Particle rank can be considered a logarith-
mic measure of the size. Similar to the analysis of the
real-world systems, we sometime only consider particles
of the first several generations 0 � k � rmax � 1, which
corresponds to the largest ranks 1 � r � rmax. Figure 10.1
illustrates the model population.

10.4 Prediction: summary

This section summarises important findings that are most
relevant to the prediction problem. Recall that the predic-
tion problem consists of assessing the likelihood of an
extreme event; the latter corresponds to an instant when a
sufficiently large particle crosses the observation space.
The likelihood of an extreme event is thus directly related
to the distance between the space of observations and the
origin. Accordingly, the prediction problem is reduced to
the estimation of this distance from available data. For that,
one should look for increase in the intensity of medium-to-
large-sized events, as well as upward deviations in the
event size distribution. We believe that this general idea

Predictability of extreme events in a branching diffusion model 129



Comp. by: K.VENKATESAN Stage: Proof Chapter No.: 10 Title Name: Ismail_Zadeh_etal
Date:30/12/13 Time:13:48:52 Page Number: 130

can be useful in a wide range of models and observed
systems, not necessarily based on a branching diffusion
mechanism. Statistical assessment of particular prediction
schemes based on this idea is left for a future study.

All statements below refer to a steady state of the model
(dynamics after a transient). All asymptotic statements
have been confirmed numerically in finite models.

(1) Meanfield self-similarity Particle ranks, averaged over
time and space, have an exponential distribution; this
is equivalent to a power-law distribution of particle
sizes; see (10.33) and Fig. 10.2.

(2) Small-size self-similarity The particle rank distribution
at any spatial point is asymptotically exponential as
rank decreases, with the exponent index �B; see
(10.38) and Figs. 10.3 and 10.4. This is equivalent to a
power-law distribution of particle sizes with power-
law index �B. Furthermore, this implies that
deviations from self-similarity, if any, can be only seen
at large ranks (large particle sizes).

(3) Upward deviations close to the origin At any point
sufficiently close to the origin, the particle size
distribution deviates from a self-similar power-law
form so as to have a larger number of medium-to-
large-sized events. The magnitude of this deviation
increases with the event size, as well as with
dimension of the model space; see (10.36) and the
upper lines in Figs. 10.3 and 10.4.

(4) Downward deviations away from the origin At any
point sufficiently far from the origin, the particle size
distribution deviates from a self-similar power-law

form so as to have a smaller number of medium-to-
large-sized events. The magnitude of this deviation
increases with the event size and is independent of the
model’s dimension; see (10.37) and the lower lines in
Figs. 10.3 and 10.4.

(5) Exponential decay of event intensity The intensity of
events of any fixed size is exponentially decaying
away from the origin; see (10.28).

(6) Divergence of event intensity at the origin For models
with a spatial dimension larger than 1, the intensity
of sufficiently large events diverges at the origin in
a power-law fashion; see (10.28),(10.30) and
Fig. 10.3(b)-(d).

10.5 Model solution: moment generating
functions

The model introduced in Section 10.3 is a superposition of
independent branching processes generated by individual
immigrants. Sections 10.5.1 and 10.5.2 analyse, respect-
ively, the one-point and two-point moments of a particle
distribution produced by a single immigrant. Then we
expand these results to the case of multiple immigrants in
Section 10.5.3.

10.5.1 Single immigrant: one-point properties

10.5.1.1 Moment generating functions
Let pk,i(G, y, t) be the conditional probability that at time
t � 0 there exist i � 0 particles of generation k � 0 within
spatial region G � Rn given that at time 0 a single immi-
grant was injected at point y. The corresponding moment
generating function is

MkðG, y, t; sÞ ¼
X
i

pk, iðG, y, tÞesi: ð10:5Þ

Proposition 5.1 The moment generating functions Mk

(G, y, t; s) solve the following recursive system of non-
linear partial differential equations:

∂
∂t
MkðG, y, t; sÞ ¼ DΔyMk � λMk þ λ hðMk�1Þ, k � 1,

ð10:6Þ
with initial conditions Mk (G, y, 0; s) � 1, k � 1, and

M 0ðG, y, t; sÞ ¼ ð1� PÞ þ Pes, P :¼ e�λt
ð
G
pðx, y, tÞdx:

ð10:7Þ
Here h(s) is defined by (10.2) and Δy ¼

X
i
∂2=∂y2i :

Proof This is given in Appendix 10.A.
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Figure 10.2. Spatially averaged particle rank distribution at
t ¼ 30. The distribution is averaged over 4000 independent
realisations of a three-dimensional model with parameters
μ ¼ λ ¼ 1, D ¼ 1, B ¼ 2, rmax ¼ 10. One can clearly see the
exponential rank distribution of Eq. (10.33).
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10.5.1.2 The first moment densities
Let AkðG, y, tÞ be the expected number of generation-k
particles at instant t within the region G, produced by a
single immigrant injected at point y at time t ¼ 0. It is
given by the following partial derivative (e.g., Athreya and
Ney 2004 Chapter 1):

AkðG,y, tÞ :¼ ∂MkðG,y, t; sÞ
∂s

����
s¼0

: ð10:8Þ

Consider also the expectation density Ak(x, y, t) that satis-
fies, for any G � Rn,

AkðG, y, tÞ ¼
ð
G
Akðx, y, tÞdx: ð10:9Þ

Corollary 10.5.2. The first moment densities Ak (x, y, t)
solve the following recursive system of partial differential
equations:

∂Akðx, y, tÞ
∂t

¼ DΔxAk � λAk þ λBAk�1, k � 1, ð10:10Þ

with the initial conditions Ak (x, y, 0) � 0, k � 1,

A0ðx, y, 0Þ ¼ δðy� xÞ, A0ðx, y, tÞ ¼ e�λtpðx, y, tÞ, t > 0:

ð10:11Þ
The solution to this system is given by

Akðx, y, tÞ ¼ ðλBtÞk
k!

A0ðx, y, tÞ

¼ ðλBÞk
k!ð4πDÞn=2

tk�n=2 exp �λt � jx� yj2
4Dt

8<
:

9=
;:

ð10:12Þ
Proof This is given in Appendix 10.C. It follows from a
general result for the higher moments obtained in Appen-
dix 10.B.

0 5 10 15 20

10−10

10−5

100

105

10−10

10−5

100

105

10−10

10−5

100

105

10−10

10−5

100

105

Rank, r

A
k
(z
)

A
k
(z
)

A
k
(z
)

A
k
(z
)

0 5 10 15 20
Rank, r

0 5 10 15 20
Rank, r

0 5 10 15 20
Rank, r

(a) (b)

(c) (d)

Figure 10.3. Expected number Ak (z) of generation-k particles at distance z from the origin (cf. Proposition 10.6.2). The distance z is
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(d) n = 10. Other model parameters: µ = λ = 1, D = 1, B = 2, rmax = 21.
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The system (10.10) has a transparent intuitive meaning.
The rate of change of the expectation density Ak(x, y, t) is
affected by three processes: diffusion of the existing par-
ticles of generation k (the first term in the right hand side of
(10.10)), splitting of the existing particles of generation k at
the rate λ (the second term), and splitting of the generation
k � 1 particles that produce on average B new particles of
generation k (the third term).

To obtain the solution for the entire population, we sum
up the contributions from all generations:

Aðx, 0, tÞ ¼
X∞
k¼0

Akðx, 0, tÞ ¼ e�λtð1�BÞ pðx, 0, tÞ

¼ e�λtð1�BÞ

4 π D tð Þn=2
exp

�
� jxj2
4 D t

�
: ð10:13Þ

This formula emphasises the role of the branching param-
eter B: in the subcritical case, B < 1, the population goes
extinct exponentially; in the supercritical case, B > 1,
the population grows exponentially; in the critical case,
B ¼ 1, the expected number of particles remains the
same (steady state) and is given by the diffusion density
p(x, 0, t).

10.5.2 Single immigrant: two-point properties

10.5.2.1 Moment generating functions
Let pk1,k2, i, jðG1,G2, y, tÞ be the conditional probability
that at instant t � 0 there exist i � 0 particles of generation
k1 � 0 within region G1 � Rn and j � 0 particles of
generation k2 � 0 within region G2 � Rn given that at
time 0 a single immigrant was injected at point y. Assume
that G1 and G2 do not overlap. The corresponding moment
generating function is

Mk1,k2 G1,G2, y, t; s1, s2ð Þ
¼
X
i, j�0

pk1,k2, i, jðG1,G2, y, tÞei s1þj s2 : ð10:14Þ

Proposition 10.5.3 The moment generating functions
Mk1,k2 G1,G2, y, t; s1, s2ð Þ solve the following recursive
system of non-linear partial differential equations:

∂
∂t
Mk1,k2 ¼DΔyMk1,k2�λMk1,k2þλhðMk1�1,k2�1Þ, k1,k2�1,

ð10:15Þ
with the initial conditions

Mk1,k2 G1,G2, y, 0; s1, s2ð Þ � 1, k1, k2 � 1, ð10:16Þ
M 0,0 G1,G2, y, t; s1, s2ð Þ ¼ P1e

s1 þ P2e
s2 þ 1� P1 � P2,

ð10:17Þ
M 0,k G1,G2, y, t; s1, s2ð Þ

¼ ðMkðG2, y, t; s2Þ � e�λtÞ þ ðe�λt � P1Þ þ P1es1 ,

ð10:18Þ

where Pi :¼ e�λt

ð
Gi

pðx, y, tÞdx, i ¼ 1,2. Here, as before,

h(s) is defined by (10.2) and Δy ¼
X

i
∂2=∂y2i :

Proof This is given in Appendix 10.D.

10.5.2.2 Moments
Consider the expected value Ak1,k2ðG1,G2, y, tÞ of the
product of the number of generation-k1 particles in region
G1 and the number of generation-k2 particles in region G2

at instant t, produced by a single immigrant injected at
point y at time t ¼ 0. It is given by the following partial
derivative:

Ak1,k2ðG1,G2, y, tÞ :¼ ∂2Mk1,k2 G1,G2,y, t; s1, s2ð Þ
∂s1∂s2

����
s1¼s2¼0

:

ð10:19Þ

We notice that the expectations Ak1ðG1, y, tÞ and
Ak2ðG2, y, tÞ of (10.8) can be represented as
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Figure 10.4. Particle rank distribution at t ¼ 30 and fixed
distance z from the origin (cf. Proposition 10.6.2). The
distribution is averaged over 4000 independent realisations
of a three-dimensional model with parameters μ ¼ λ ¼ 1, D ¼ 1,
B ¼ 2, rmax ¼ 10. Different lines correspond to different
distances (from top to bottom): z ¼ 0, 2, 4, 6, 8. One can
clearly see that the rank distribution deviates from the pure
exponential form, which corresponds to a straight line in the
semilogarithmic scale used here. One observes downward
deviations at large distances from the origin, and upward
deviations close to the origin.
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Ak1ðG1, y, tÞ :¼ ∂Mk1,k2 G1,G2,y, t; s1, s2ð Þ
∂s1

����
s1¼s2¼0

ð10:20Þ

and

Ak2ðG2, y, tÞ :¼ ∂Mk1,k2 G1,G2,y, t; s1, s2ð Þ
∂s2

����
s1¼s2¼0

:

ð10:21Þ

Consider also the expectation density Ak1,k2ðx1, x2, y, tÞ
that satisfies, for any non-overlapping G1,G2 � Rn,

Ak1,k2ðG1,G2, y, tÞ ¼
ð
G2

ð
G1

Ak1,k2ðx1, x2, y, tÞdx1dx2:

ð10:22Þ

Corollary 10.5.4 The moment densities Ak1,k2 �
Ak1,k2ðx1, x2, y, tÞ solve the following recursive system of
partial differential equations:

∂Ak1,k2

∂t
¼ D ΔyAk1,k2 � λ Ak1,k2 þ λ B Ak1�1,k2�1

þλ h
00 ð1Þ Ak1�1ðx1Þ Ak2�1ðx2Þ, k1, k2 � 1,

ð10:23Þ
with the initial conditions

Ak1,k2ðx1, x2, y, 0Þ � 0, k1, k2 � 1, ð10:24Þ

A0,kðx1, x2, y, tÞ � 0, k � 0, t � 0, ð10:25Þ

and Ak (x) � Ak(x, y, t) given by (10.12).

Proof This is given in Appendix 10.E.

10.5.3 Multiple immigrants
Here we expand the results of the Section 10.5.1 to the case
of multiple immigrants that appear at the origin according
to a homogeneous Poisson process with intensity μ. The
expectationAk of the number of particles of generation k is
given by

Akðx, tÞ ¼
ðt
0
Akðx, 0, sÞ μ ds

¼ μ ðλ BÞk
k! 4 π Dð Þn=2

ðt
0
sk�n=2 exp

�
� λ s� jxj2

4 D s

�
ds:

ð10:26Þ
The steady-state spatial distribution corresponds to the
limit t ! ∞:

AkðxÞ :¼Akðx,∞Þ ¼ 2 μ ðλ BÞk
k! 4 π Dð Þn=2

jxj2
4D λ

 !ν=2

Kν jxj
ffiffiffiffi
λ
D

r !
:

ð10:27Þ
Here ν ¼ k � n/2 þ 1 and Kν is the modified Bessel
function of the second kind (see Appendix 10.G). Introdu-
cing the normalised distance from the origin z :¼ jxj ffiffiffiffiffiffiffiffi

λ=D
p

we obtain

AkðzÞ ¼ μ
λ k!

B

2

� �k 2 π D

λ

� ��n=2

zν KνðzÞ: ð10:28Þ

For odd n, there are explicit expressions for Kν(z) (Appen-
dix 10.G, (10.G2),(10.G3)). In particular, we have

A0ðzÞ ¼ μffiffiffiffiffiffiffiffiffiffiffi
4 D λ

p e�z, for n ¼ 1,

A0ðzÞ ¼
ffiffiffiffiffiffi
λ

D3

s
μ

4 π z
e�z, for n ¼ 3:

ð10:29Þ

From (10.28) and the asymptotic behaviour of Kν(z) as
z ! 0 (Appendix 10.G, (10.G5)) it follows that

lim
z!0

AkðzÞ ¼
�

∞, for ν � 0, i:e:, k � n=2� 1
const < ∞, for ν > 0, i:e:, k > n=2� 1:

ð10:30Þ

Thus, in a model with spatial dimension n � 2, the elem-
ents of several of the lowest generations (k � n/2� 1) have
an infinite concentration at the origin.

10.5.4 Alternative model representation
In this section we derive a system of equations for the
steady-state expectations AkðxÞ using the radial symmetry
of the problem. By integrating (10.10) from t ¼ 0 to ∞, we
obtain

DΔxAkðxÞ � λAkðxÞ þ λBAk�1ðxÞ ¼ 0,

since Ak (x, y, ∞) ¼ 0. We now rewrite this equation in
terms of the normalised distance from the origin,
z :¼ jxj ffiffiffiffiffiffiffiffi

λ=D
p

, using the fact that AkðxÞ � AkðzÞ as soon
as jxj¼jzj:

A
00
kðzÞ þ

n� 1

z
A

0
kðzÞ �AkðzÞ þ BAk�1ðzÞ ¼ 0: ð10:31Þ

We notice, furthermore, that one can rewrite the expect-
ation densities (10.12) as a function of z, which results in
Ak(z) � Ak (x, 0, t). It is then readily seen that

A
0
kðzÞ ¼ � B

2k
z Ak�1ðzÞ: ð10:32Þ
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The same recursive system holds for AkðzÞ, which is
shown by integrating the last equation with respect to time.

10.6 Particle rank distribution

We analyse here the particle rank distribution; recall that
the rank is defined as r ¼ rmax � k, where k is the particle’s
generation. A self-similar branching mechanism that
governs the model suggests an exponential distribution of
particle ranks. Indeed, the spatially averaged steady-state
rank distribution is a pure exponential law with index B:

Ak :¼
ð
Rn

ð∞
0
Akðx, 0, tÞμ dt dx

¼ μ Bk

k!

ð∞
0
ðλtÞke�λt dt ¼ μ

λ
Bk / B�r: ð10:33Þ

Remark 10.6.1 The use of the term ‘self-similar’ with
respect to the exponential distribution, often seen in phys-
ical literature, requires some explanation. As we men-
tioned earlier, the particle rank serves as a logarithmic
measure of its size. Thus, the exponential distribution of
ranks corresponds to the power-law distribution of sizes;
hence the term ‘self-similarity’.

To analyse rank- and space-dependent deviations from
the pure exponential distribution, we consider the ratio
γk (x) between the number of particles of two consecutive
generations:

γkðxÞ :¼
AkðxÞ
Akþ1ðxÞ : ð10:34Þ

For the purely exponential rank distribution, Ak(x) ¼ c Bk,
the value of γk (x) ¼ 1/B is independent of k and x; while
deviations from the pure exponential distribution cause γk
to vary as a function of k and/or x. Plugging (10.28) into
(10.34) we find

γkðxÞ ¼
2 ðk þ 1Þ

B z

KνðzÞ
Kνþ1ðzÞ , ð10:35Þ

where, as before, z :¼ jxj ffiffiffiffiffiffiffiffi
λ=D

p
and ν ¼ k � n/2þ1.

Proposition 10.6.2 The asymptotic behaviour of the func-
tion γk (z) is given by

lim
z!0

γkðzÞ ¼
∞, ν � 0,

1

B

�
1þ n

2 ν

�
, ν > 0,

8<
: ð10:36Þ

γkðzÞ �
2ðk þ 1Þ

B z
, z ! ∞, fixed k, ð10:37Þ

γkðzÞ �
1

B
1þ n

2 ν

� 	
, k ! ∞, fixed z: ð10:38Þ

Proof This and the explicit rates of divergence in (10.6.4)
are given in Appendix 10.F.

Proposition 10.6.2 describes the spatio-temporal
deviations of the particle rank distribution from the pure
exponential law (10.33). We interpret below each of
(10.36)–(10.38) in some detail. Equation (10.38) implies
that at any spatial point, the distribution asymptotically
approaches the exponential form as generation k increases
(rank r decreases). In other words, the distribution of
small ranks (large generation numbers) is close to the
exponential with index �B; thus the deviations can only
be observed at the largest ranks (small generation
numbers). Analysis of the large-rank distribution is done
using (10.36) and (10.37). Near the origin, where the
immigrants enter the system, (10.36) implies that γk (z)
> γkþ1(z) > 1/B for ν > 0. Hence, one observes the
upward deviations from the pure exponential distribution:
for the same number of rank r particles, the number of
rank r þ 1 particles is larger than predicted by the expo-
nential law. The same behaviour is in fact observed for
ν � 0 (see Appendix 10.F, (10.F5)). In addition, for ν � 0
the ratios γk(z) do not merely deviate from 1/B, but
diverge to infinity at the origin. Away from the origin,
according to (10.37), we have γk(z) < γk þ 1 (z) < 1/B,
which implies downward deviations from the pure expo-
nent: for the same number of rank r particles, the number
of rank r þ 1 particles is smaller than predicted by the
exponential law.

Figure 10.3 illustrates the above findings; it shows
the distribution of particles for the largest ranks at
different distances from the origin. One can clearly see
the transition from downward to upward deviation of
the rank distributions from the pure exponential form
as we approach the origin. Notably, the magnitude of
the upward deviation close to the origin (the upper
line in all panels) strongly increases with the model
dimension n.

10.7 Numerical analysis

Our analytical results and asymptotics are closely repro-
duced in numerical experiments with a finite number of
generations, limited spatial extent, and spatial averaging
(unavoidable when working with observations). Here, to
mimic the ensemble averaging, the numerical results have
been averaged over 4000 independent realisations of
a three-dimensional model with parameters μ ¼ λ ¼ 1,
D ¼ 1, and B ¼ 2.
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First, we check the exponential rank distribution of
(10.33). Figure 10.2 shows the observed spatially averaged
particle rank distribution. The exponential form (10.33) is
indeed well reproduced.

Next, we see how the spatial averaging affects the rank
distribution. Figure 10.4 shows the rank distribution at
t ¼ 30 at various distances to the origin. The spatial
averaging has been done within spherical shells (space
between two concentric spheres) of a constant volume
V ¼ 5 with inner radius z. Thus, here we see an observable
counterpart of the theoretical distributions shown in
Fig. 10.3(b). Although the spatial averaging somewhat
tapers off the upward bend at the largest ranks close to
the origin, the predicted transition from the downward to
upward bend is clearly seen.

Figure 10.5 illustrates in more detail how the spatial
averaging affects the upward bend in a three-dimensional
model. It shows the particle rank distributions at t ¼ 30
spatially averaged over spheres of different volumes
centred at the origin. The upward bend is prominent
for the spheres with volumes V � 5; and it gradually
disappears within larger spheres in favour of an exponen-
tial distribution observed after a complete spatial aver-
aging. Notably, the pure exponential distribution can
only be achieved by averaging over all events in the model
(V ¼ ∞).

10.8 Discussion

The problem of predicting extreme events in complex
systems is challenging. This chapter proposes a simple
mechanism and a single control parameter for premonitory
patterns that has been reported in the literature.

Quantitative analysis is performed here for a classical
model of a spatially distributed population of particles of
different sizes governed by direct cascade of branching and
external driving (see Section 10.3). In probability theory
this model is known as the age-dependent multi-type
branching diffusion process with immigration (Athreya
and Ney, 2004). This chapter discusses a new scope of
problems for this model. We assume that observations
(detection of particles) are only possible on a subspace of
the system space while the source of external driving
(origin) remains unobservable, as is the case in many
real-world systems. The natural question under this
approach concerns the dependence of the process statistics
on the distance to the source. A complete analytical solu-
tion to this problem, in terms of the moments with respect
to the particle density, is given by Proposition 10.5.1. In
addition, the correlation structure of the particle field can
be found using Proposition 10.5.3.

It is natural to consider rank as a logarithmic measure of
the particle size. The exponential rank distribution derived
in (10.33) corresponds to a self-similar, power-law distri-
bution of particle sizes, characteristic for many complex
systems. The self-similarity in the considered model, as
well as in the real-world systems, is only observed after
global spatial averaging in a steady state. Proposition
10.6.2 and Fig. 10.3 describe space-dependent deviations
from the self-similarity. Recall that an extreme event in the
examined system is defined as an observation of a particle
of sufficiently large size. As the source approaches the
observation subspace, the probability of an extreme event
increases. These results are thus directly connected to
prediction: when the location of the source changes in
time and approaches the subspace of observation (or vice
versa), the increase of event intensity and the downward
bend in the event size distribution becomes premonitory to
an extreme event. The numerical experiments confirm
the validity of the analytical results and asymptotics in a
finite model.

The examined model exhibits very rich and intriguing
premonitory behaviour. Figure 10.1 shows several
two-dimensional snapshots of a three-dimensional model
at different distances from the source. One can see that,
as the source approaches, the following changes in the
background activity emerge: (a) the intensity (total
number of particles) increases; (b) particles of larger size
become relatively more numerous; (c) particle clustering
becomes more prominent; (d) the correlation radius
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Figure 10.5. Particle rank distribution at t ¼ 30 in a
three-dimensional model. The distribution is spatially
averaged over spheres of volume V centred at the origin with
(from top to bottom): V ¼ ∞, 500, 100, 200, 5, 1, 0.01.
Model parameters: μ ¼ λ ¼ 1, D ¼ 1, B ¼ 2, rmax ¼ 10.
The upward deviations from the exponential distribution
(a straight line) are fading away with the extent of the spatial
averaging.
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increases. All these premonitory changes have been inde-
pendently observed in natural and socioeconomic
systems. Here they are all determined by a single control
parameter – the distance between the source and the
observation space.

The above-mentioned premonitory patterns closely
resemble universal properties of models of statistical
physics in the vicinity of second order phase transition
(Stanley, 1971; Ma, 2000; Kadanoff, 2000), percolation
models near the percolation threshold (Stauffer and
Aharony, 1994; Grimmett, 1999), and random graphs
prior to the emergence of a giant cluster (Bollobás,
2001; Durrett, 2006; Newman et al., 2006). In these
models, the approach of an extreme event, usually
referred to as a critical point, and the emergence of pre-
monitory patterns, called critical phenomena, correspond
to an instant when a control parameter crosses its critical
value. In statistical physics a typical control parameter is
temperature or magnetisation; in percolation it is the site
or bond occupation density; in a random graph it is the
probability for two vertices to be connected. The theory
of critical phenomena (Ma, 2000) quantifies a system’s
behaviour at the critical value of the corresponding con-
trol parameter. The remarkable power of this theory is
connected to the fact that very different systems demon-
strate similar behaviour near to criticality. More precisely,
when the control parameter is close to its critical value,
the system sticks to one of just a few types of possible
limit behaviours, each being described by an appropriate
scale-invariant statistical field theory. In particular, each
limit behaviour corresponds to the asymptotic power-law
size distribution of system observables with a character-
istic value of critical exponent.

We have focused in this chapter on a problem
inverse to that considered by the critical phenomena
theory: estimating the deviation of a control parameter
from the critical value using the observed system behav-
ior. The motivation for this comes from environmental,
geophysical, and other applied fields where one faces
the problem of assessing the likelihood of the occur-
rence of an extreme event associated with a critical
point. We have formulated and solved such a
prediction problem for a spatially embedded cascade
process, which enjoys both mean-field self-similarity
and realistic premonitory time- and space-dependent
deviations from the latter. The methods presented in
this chapter may provide a framework for studying
predictability of extreme events in complex systems of
arbitrary nature.
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Appendix 10.A

PROOF OF PROPOSITION 10.5.1

We will need the following calculus lemma that is readily
proven by using the definition of derivative:

Lemma 10.A.1 Let f(z), g(z), z 2 R be continuous functions

such that the definite integral GðtÞ ¼
ðt
0
f ðzÞ gðt � zÞdz

exists. We also assume that g(z) is differentiable. Then,

d

dt
GðtÞ ¼

ðt
0
f ðzÞ g0ðt � zÞdzþ f ðtÞ gð0Þ:

There are two possible scenarios for the model develop-
ment up to time t. In the first one, the initial immigrant will
not split; the probability for this is P ¼ e�λt. In the second
one, the initial immigrant will split at instant 0 � u � t; the
probability of the first split within the time interval [u, u þ
du] is λe�λt du þ o(du) as du ! 0. The spatial position of
the split is given by the diffusion density p(x, y, u). If the
immigrant splits, the composition property of generating
functions givesMk ¼ h[Mk�1]. Integrating over all possible
split instants and locations, we obtain

MkðG, y, t; sÞ ¼ e�λt þ
ð
Rn

dy0
ðt
0
du λe�λupðy0, y, uÞ

h½Mk�1ðG, y0, t � u; sÞ�: ð10:A1Þ
Here the first and the second terms correspond to the first
and second scenarios, respectively. Using the new integra-
tion variable z ¼ t � u, we write

MkðG, y, t; sÞ ¼ e�λt þ e�λt

ð
Rn

dy0
ðt
0
du λeλðt�uÞpðy0, y, uÞ

h½Mk�1ðG, y0, t � u; sÞ�

¼ e�λt 1þ
ð
Rn

dy0
ðt
0
dz λeλzpðy0, y, t � zÞ

�

h½Mk�1ðG, y0, z; sÞ�
�
:

Now we take the derivative with respect to t of both sides
and apply Lemma 10.A.1 using the fact that p(y0, y, 0) ¼
δ(y0 � y) and (∂/∂t � DΔy)p ¼ 0:

∂
∂t
MkðG,y, t;sÞ¼�λMkðG,y, t;sÞ

þe�λt
ð
Rn

dy0
ðt
0
dz λeλz h½Mk�1ðG,y0,z;sÞ�




DΔy pðy0,y, t� zÞþλeλt h½Mk�1ðG,y, t;sÞ��:
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Taking the operator Δy out of the integration signs, we find

∂
∂t
MkðG, y, t; sÞ ¼ DΔyMk � λMk þ λ h½Mk�1�:

It is left to establish the initial conditions. Since we start the
model with a particle of generation k ¼ 0 and the distribu-
tion of splitting is continuous, at t ¼ 0 there are no other
particles with probability 1. Hence, Mk(G, y, 0; s) ¼ 1 for
all k � 1. For generation k ¼ 0, we can only have 1 or no
particles at time t > 0. The probability to have 1 particle is
given by the product of probabilities that there was no split
up to time t and that the particle happens to be within

region G at time t: P ¼ e�λt

ð
G
pðx, 0, tÞdx. The probability

to have no particles is then (1 � P). This implies (10.7).

Appendix 10.B

MOMENTS IN ONE-POINT SYSTEM

For any natural number j, consider the jth moment
A
ðjÞ
k ðG, y, tÞ of the number of generation-k particles at

instant t within the region G, produced by a single immi-
grant injected at point y at time t ¼ 0. It is given by the
following partial derivative (e.g., Athreya and Ney, 2004,
Chapter 1):

A
ðjÞ
k ðG,y, tÞ :¼ ∂ jMkðG,y, t; sÞ

∂sj

����
s¼0

: ð10:B1Þ

Corollary 10.B.1 The moments A
ðjÞ
k ðG, y, tÞ solve the

following recursive system of partial differential equations:

∂
∂t
A
ðjÞ
k ðG,y, tÞ¼DΔyA

ðjÞ
k � λA

ðjÞ
k

þλ
P j!

m1!m2! . . .mj!
hðmÞð1Þ

Yj
i¼1

A
ðiÞ
k�1

i!

0
@

1
A

mi
2
4

3
5,

ð10:B2Þ

where m ¼ m1 þ 	 	 	 þ mj and the sum is over all parti-
tions of j, i.e., values of m1,. . .,mj such that m1 þ 2m2

þ 	 	 	 þ jmj ¼ j, with the initial conditions

A
ðjÞ
k ðG, y, 0Þ � 0, k � 1, ð10:B3Þ

A
ðjÞ
0 ðG, y, 0Þ ¼

ð
G
δðy� xÞdx, ð10:B4Þ

A
ðjÞ
0 ðG, y, tÞ ¼ e�λt

ð
G
pðx, y, tÞdx, t > 0, ð10:B5Þ

and

hðiÞð1Þ :¼ di

dsi
hðsÞ

����
s¼1

¼
X∞
n¼i

n!

ðn� iÞ! pn:

Proof The validity of (10.B2) follows from Proposition
10.5.1. Namely, applying the operator ∂ j/∂s j(	)js ¼ 0 to
both sides of (10.6), changing the order of differentiation,
and using Faà di Bruno’s formula (Faá di Bruno, 1855)
for the jth derivative of a composition function, one finds,
for each k � 1,

∂ j

∂s j



∂MkðG,y, t; sÞ

∂t

�����
s¼0

¼ ∂ j

∂s j
DΔyMk � λMk þ λ hðMk�1Þ
� 
����

s¼0

,

∂
∂t



∂ jMkðG,y, t; sÞ

∂s j

����
s¼0

�

¼


DΔy

∂ jMk

∂s j
� λ

∂ jMk

∂s j
þ λ

∂ j

∂s j
hðMk�1Þ

�����
s¼0

,

∂
∂t
A
ðjÞ
k G,y, tð Þ¼ DΔy

∂ jMk

∂s j
�λ

∂ jMk

∂s j

2
4

þλ
X j!

m1!m2! 	 	 	mj!
hðmÞðMk�1Þ

0
@
Yj
i¼1

�
M ðiÞ

k�1

i!

�mi
!#�����

s¼0

¼DΔyA
ðjÞ
k �λA

ðjÞ
k þλ

"X j!

m1!m2! 	 	 	mj!
hðmÞð1Þ

Yj
i¼1

�
A
ðiÞ
k�1

i!

�mi
#
,

where m ¼ m1 þ 	 	 	 þ mj and the sum is over all partitions
of j, i.e., values of m1,. . .,mj such that m1 þ 2m2

þ 	 	 	 þ jmj ¼ j. The initial conditions are established by
applying the operator ∂ j/∂s j(	)js¼0 to both sides of (10.7)

and using the definition of A
ðjÞ
k ðG, y, tÞ in (10.8).
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Appendix 10.C

PROOF OF COROLLARY 10.5.2

For j ¼ 1, the equation in Corollary 10.B.1 simplifies to

∂
∂t
AkðG, y, tÞ ¼ DΔyAk � λAk þ λBAk�1:

Using the definition of Ak (x, y, t) given in (10.9), one
obtains for each k � 1,

∂
∂t
Akðx, y, tÞ ¼ DΔyAk � λAk þ λBAk�1:

It is left to use the translation property Ak (x, y, t) ¼
Ak (x � y, 0, t) to change Δy to Δx.

The validity of general solution (10.12) is proven by
induction using the fact that

∂
∂t

� DΔx þ λ


 �
A0 ¼ 0:

The last equality in (10.12) follows from (10.B5)
and (10.4).

Appendix 10.D

PROOF OF PROPOSITION 10.5.3

The proof of Proposition 10.5.3 follows the line of the
proof of Proposition 10.5.1. There are two possible scen-
arios for the model development up to time t. In the first
one, the initial immigrant will not split; the probability for
this is P ¼ e�λt. In the second one, the initial immigrant
will split at instant 0 � u � t; the probability of the first
split within the time interval [u, uþ du] is λe�λt duþ o(du)
as du ! 0. The spatial position of the split is given by the
diffusion density p(x, y, u). If the immigrant splits, the
composition property of generating functions gives
Mk1,k2 ¼ h½Mk1�1,k2�1�. Integrating over all possible split
instants and locations, we obtain

Mk1,k2 G1,G2, y, t; s1, s2ð Þ

¼ e�λt þ
ð
Rn

dy0
ðt
0
du λe�λupðy0, y, uÞ

h Mk1�1,k2�1 G1,G2, y
0, t � u; s1, s2ð Þ½ �:

Here the first and second terms correspond to the first and
second scenarios, respectively. Using the new integration
variable z ¼ t � u, we write

Mk1,k2 G1,G2, y, t; s1, s2ð Þ

¼ e�λt þ e�λt
ð
Rn

dy0
ðt
0
du λeλðt�uÞpðy0, y, uÞ

h Mk1�1,k2�1 G1,G2, y
0, t � u; s1, s2ð Þ½ �

¼ e�λt 1þ
ð
Rn

dy0
ðt
0
dz λeλzpðy0, y, t � zÞ

�
h Mk1�1,k2�1 G1,G2, y

0, z; s1, s2ð Þ½ �Þ:
Now we take the derivative with respect to t of both
sides and apply Lemma 10.A.1 using the fact that
pðy0, y, 0Þ ¼ δðy0 � yÞ and ð∂=∂t � DΔyÞp ¼ 0:

∂
∂t
Mk1,k2 G1,G2,y,t;s1,s2ð Þ

¼�λMk1,k2 G1,G2,y,t;s1,s2ð Þ

þe�λt
ð
Rn
dy0
ðt
0
dzλeλz



hMk1�1,k2�1

�
G1,G2,y

0,z;s1,s2
�� 

DΔyp

�
y0,y,t�z

�
þλeλt h Mk1�1,k2�1 G1,G2,y,t;s1,s2ð Þ½ �

�
:

Taking the operator Δy out of the integration signs, we find

∂
∂t
Mk1,k2ðG1,G2, y, t; s1, s2Þ ¼ DΔyMk1,k2 � λMk1,k2

þλ h½Mk1�1,k2�1�:
It is left to establish the initial conditions. Since we start the
model with a particle of generation k¼ 0 and the distribution
of splitting is continuous, at t ¼ 0 there are no other particles
with probability 1. Hence, Mk1,k2ðG1,G2, y, 0; s1, s2Þ ¼ 1
for all k1, k2 � 1. For generation k1 ¼ k2 ¼ 0, we have
three possibilities: the initial immigrant has not split and is
in G1 (i ¼ 1, j ¼ 0), the initial immigrant has not split and
is in G2 (i ¼ 0, j ¼ 1), and neither (i ¼ 0, j ¼ 0), with
corresponding probabilities of P1, P2, and 1 � P1 � P2,
respectively. This implies (10.17).

For generation k1 ¼ 0 and k2 ¼ k � 1, we again have
three possibilities: the initial immigrant has not split and is
in G1 (i ¼ 1, j ¼ 0), the initial immigrant has not split and
is not in G1 (i ¼ 0, j ¼ 0), and the initial immigrant has
split (i ¼ 0, j � 0), with corresponding probabilities of P1,
e�λt � P1, and 1 � e�λt, respectively. In the last case, the
number of the zeroth generation particles in G1 is 0 with
probability 1 while the information on the kth generation
particles in G2 is given byð
Rn

dy0
ðt
0
du λe�λupðy0, y, uÞ h½Mk�1ðG2, y

0, t � u; s2Þ�:

From (10.A1), we see that the above expression equals
Mk(G2, y, t; s2) � e�λt. This implies (10.18). We notice
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that setting s2 ¼ 0 in (10.17) and (10.18) each yields
ð1� P1Þ þ P1es1 as it should (cf. (10.7)).

Appendix 10.E

PROOF OF COROLLARY 10.5.4

The validity of (10.13) follows from Proposition 10.5.3
and the definition of Ak1,k2ðG1,G2, y, tÞ, Ak1,k2ðx1, x2, y, tÞ.
Formally, applying the operator ∂2=∂s1∂s2ð	Þjs1¼s2¼0 to
both sides of (10.15) and changing the order of differenti-
ation, one finds, for each k1, k2 � 1,

∂2

∂s1∂s2



∂Mk1,k2

∂t

�����
s1¼s2¼0

¼ ∂2

∂s1∂s2
DΔyMk1,k2�λMk1,k2þλhðMk1�1,k2�1Þ
� 
js1¼s2¼0,

∂
∂t

"
∂2Mk1,k2

∂s1∂s2
js1¼s2¼0

#

¼
"
DΔy

∂2Mk1,k2

∂s1∂s2
�λ

∂2Mk1,k2

∂s1∂s2

þλh0ðMk1�1,k2�1Þ∂
2Mk1�1,k2�1

∂s1∂s2

þλh00ðMk1�1,k2�1Þ∂Mk1�1,k2�1

∂s1

∂Mk1�1,k2�1

∂s2

#�����
s1¼s2¼0

,

∂
∂t
¼DΔyAk1,k2�λAk1,k2þλBAk1�1,k2�1

þλh00ð1ÞAk1�1ðG1ÞAk2�1ðG2Þ:
The system (10.23) readily follows now from the definition
of Ak1,k2ðx1,x2,y,tÞ. The initial conditions (10.24)–(10.25)
are established by applying the operator
∂2=∂s1∂s2ð	Þjs1¼s2¼0 to both sides of (10.16)–(10.18) and
using again the definition of Ak1,k2ðx1,x2,y,tÞ.

Appendix 10.F

PROOF OF PROPOSITION 10.6.2

The asymptotic (10.37) readily follows from (10.G4). To
prove (10.38), let rν(z): ¼ Kν(z)/Kνþ1(z). From (10.G.1)
one finds that

Kνþ1ðzÞ
KνðzÞ ¼ Kν�1ðzÞ

KνðzÞ þ 2 ν
z

ð10:F1Þ

and furthermore

z

2 ν
1

rνðzÞ ¼
z

2 ν
rν�1ðzÞ þ 1: ð10:F2Þ

From the monotonicity of Kν(z) with respect to the index
ν > 0 it follows that rν(z) < 1 for ν > 0. Accordingly, the
first term on the right hand side of (10.F2) goes to zero as
k ! ∞. Hence,

lim
k!∞

z

2 ν
1

rνðzÞ ¼ 1, or rνðzÞ � z

2 ν
, k ! ∞: ð10:F3Þ

To complete the proof of (10.38), we use this asymptotic in
(10.35). Finally, we prove (10.36). In fact, we will derive a
stronger result showing the asymptotics of rν(z) and γν(z) as
z! 0. To find the asymptotics for rν(z), we use (10.G5) for
all possible combinations of signs for ν and ν þ 1. We
take into account that by definition ν can only take values
(i, i þ 1/2}i2Z.

rνðzÞ¼

KνðzÞ
Kνþ1ðzÞ � Γð�νÞ

Γð�ν�1Þ
�
2

z

��ν�ð�ν�1Þ
� 2ð�ν�1Þ=z, ν��3=2,

K�1ðzÞ
K0ðzÞ � ½zðlnð2=zÞ�γÞ��1 � �ðzlnzÞ�1, ν¼�1,

K�1=2ðzÞ
K1=2ðzÞ

¼ 1, ν¼�1=2,

K0ðzÞ
K1ðzÞ � zðlnð2=zÞ�γÞ � �zlnz, ν¼0,

KνðzÞ
Kνþ1ðzÞ � ΓðνÞ

Γðνþ1Þ
�
2

z

�ν�ðνþ1Þ
¼ z=ð2νÞ, ν>0:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð10:F4Þ

Combining this with (10.35) we find

γνðzÞ ¼
2 ðk þ 1Þ

B z
rνðzÞ �

4

B z2
ðνþ n=2Þ ð�ν� 1Þ, ν � �3=2,

� ðn� 2Þ
B z2 ln z

, ν ¼ �1,

n� 1

B z
, ν ¼ �1=2,

� n ln z

B
, ν ¼ 0,

1

B

�
1þ n

2 ν

�
, ν > 0:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð10:F5Þ

One can see that for ν � 0 the ratio γν(z) diverges at the
origin. The rate of divergence increases monotonously
from ln z to z�2 with the absolute value of ν.
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Appendix 10.G

PROPERTIES OF KΝ

Here we summarise some essential facts about the modi-
fied Bessel function of the second kind Kν(z). The sources
of this as well as further information about Kν(z) are
handbooks (Abramowitz and Stegun, 1965, Chapters 9, 10)
and (Gradshtein and Ryzhik, 2007, Section 8.4). The
function Kν can be defined as a decreasing solution of
the modified Bessel differential equation

x2 y00 þ x y0 � x2 þ ν2
� �

y ¼ 0:

The function Kν(z) exponentially decreases as z ! ∞ and
diverges at z ¼ 0. In addition, K�ν(z)¼ Kν(z) and

Kνþ1ðzÞ ¼ Kν�1ðzÞ þ 2 ν
z

KνðzÞ: ð10:G1Þ

For integer k � 0 we have

Kkþ1=2ðzÞ ¼
ffiffiffiffiffi
π
2z

r
e�z
Xk
m¼0

ðk þ mÞ!
m!ðk � mÞ!ð2zÞm , ð10:G2Þ

and in particular

K
1=2ðzÞ ¼
ffiffiffiffiffiffi
π
2 z

r
e�z; K3=2ðzÞ ¼

ffiffiffiffiffiffiffiffi
π

2 z3

r
e�z: ð10:G3Þ

For arbitrary fixed ν and z � ν

KνðzÞ �
ffiffiffiffiffiffi
π
2 z

r
e�z, z ! ∞: ð10:G4Þ

The asymptotic behaviour at z ¼ 0 is given by

KνðzÞ �

ΓðjνjÞ
2

�
2

z

�jνj
, jνj 6¼ 0,

log

�
2

z

�
� γ, ν ¼ 0,

8>>>><
>>>>:

ð10:G5Þ

where γ � 0.577 is the Euler–Mascheroni constant
(Euler, 1734).
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