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1 INTRODUCTION

In this paper we report on theoretical results from Cvitanić, Liptser and Rozovskii [3] and on

their numerical implementation in Cvitanić, Rozovskii and Zaliapin [4]. The problem we con-

sider is the one of estimating the current volatility value from stock price observations. The

observations are discrete, possibly observed at random times. The main application we have

in mind is high-frequency stock data (”tick-by-tick” data). We work in a continuous-time,

Brownian motion driven model for the stock price, with stochastic volatility, independent of

the driving Brownian motion process.

Related literature includes Frey and Runggaldier [7], Runggaldier [25], Elliott et al [5],

Gallant and Tauchen [8], Malliavin and Mancino [20], Fouque et al. [6], Rogers and Zane

[23], and Kallianpur and Xiong [13], Ait Sahalia and Mykland [1], Platania and Rogers [22],

and Johannes and Polson [11]. There is also a rich econometrics, time-series literature on

ARCH-GARCH models of stochastic volatility, presenting an alternative way to model and

estimate volatility; see Gourieroux [9] for a survey.

Our work was motivated primarily by Frey and Runggaldier [7]. That paper derives a

Kallianpur-Striebel type formula (see e.g. [12]) for the optimal mean-square filter of the

volatility process, and investigates Markov Chain approximations for this formula. We

extend this result in that we derive the exact filtering equations, which can easily be imple-

mented.

The Frey and Runggaldier model is a natural model for stochastic volatility, but it does

not quite fall in the “standard” category of diffusion or simple point processes models for

which filtering results have been developed (cf. [18], [15], [24]). Thus, there was a need to

develop further technical tools to deal with our problem. However, it turns out that the

resulting filtering equations are simpler than in the case of continuous observations. In the

latter case, the nonlinear filters are described by infinite dimensional stochastic differential

equations, for example, by stochastic partial differential equations (see e.g. [24]). In con-

trast, in our setting, the filtering equation can be reduced to a recursive system of linked

deterministic equations of Kolmogorov type. Moreover, at the observation times the filter

is given by a simple Bayesian recursion.

In our numerical example we assume that the volatility is a Markov chain process. Before

we can do the filtering, we have to decide what possible values the volatility chain can attain,

and what the transition probabilities are. This preliminary stage is related to the power

variation estimates of volatility, as surveyed in Barndorff-Neielsen, Graversen and Shephard

[2], for example. We adapt the so-called Multiscale Trend Analysis of Zaliapin et al. [27],

where we use a variation process to estimate possible volatility values. However, while in

the power variations literature such an estimate is the final estimate of volatility, in our case

it serves only as an estimate of a priori values, from which we then get a posteriori values
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using filtering. Also, let us emphasize again that, unlike most of the existing work, the time

intervals between observations may be random in our framework.

We show that the complete algorithm, consisting of the preliminary estimation and the

filtering estimation, performs very well in a variety of circumstances, on simulated and on

real data. It quickly recognizes when there is a jump in volatility value. It is also robust

with respect to the given drift value, which is important, as the drift is hard to estimate in

practice.

We describe the model in section 2, state the main filtering results and examples in section

3, discuss the preliminary estimation of the model parameters in section 4, the numerical

implementation of the filtering formula in section 5, and the complete algorithm in section

6. We present two examples with real data in section 7.

2 THE MODEL

2.1 Observation values and observation times

We fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0 satisfying the

“usual” conditions (see, e.g. [19]). All random processes considered in the paper are assumed

to be defined on (Ω,F ,P) and adapted to F.

We consider a stock price process S = (St)t≥0 given by the Itô equation

dSt = r(θt)Stdt+ v(θt)StdBt (2.1)

where B = (Bt)t≥0 is a standard Brownian motion and θ = (θt)t≥0 is a cádlág Markov

jump-diffusion process in R with the generator L. For the sake of simplicity, we assume that

r(x) and v(x) are measurable bounded functions on R, the initial condition S0 is constant,

and v(x) and S0 are positive.

The process (θt)t≥0 is referred to as the volatility process. It is unobservable, and the only

observable quantities are the values of the log-price process Xt = logSt taken at stopping

times (Tk)k≥0, so that T0 = 0, Tk < Tk+1 if Tk < ∞, and Tk ↑ ∞ as k ↑ ∞.

According to (2.1), the log-price process is given by

Xt =

∫ t

0

(
r(θs)− 1

2
v2(θs)

)
ds+

∫ t

0

v(θs)dBs.

We use the abbreviated notationXk := XTk
.Thus, the observations are given by the sequence

(Tk, Xk)k≥0. The observation process (Tk, Xk)k≥0 is a multivariate (marked) point process

(see, e.g. [10], [16]) with the counting measure

r(dt, dy) =
∑
k≥1

I{Tk<∞}δ{Tk ,Xk}(t, y)dtdy,
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where δ{Tk,Xk} is the Dirac delta-function on R+ × R.

We introduce two filtrations related to (Tk, Xk)k≥0: (G(n))n≥0 and (Gt)t≥0, where

- G(n) := σ{(Tk, Xk)k≤n},
- Gt := σ(r([0, s]× Γ) : s ≤ t,Γ ∈ B(R)), where B(R) is the Borel σ-algebra on R.

It is a standard fact (see III.3.31 in [10])

GTk
= G(k), k = 0, 1 . . . , (2.2)

and {Tk} is a system of stopping times with respect to (Gt)t≥0.

Remark 2.1 The filtration
(Gt

)
t≥0

provides more information than the filtration GTk
, namely

it provides additional information about the duration between the observation times.

The paper Cvitanić, Liptser and Rozovskii [3] works out the filtering formula for general

observation times, but here, for the simplicity of presentation, we will assume the following:

Assumption 2.1 The observation times (Tk)k≥0 are either:

(i) the jump times of a doubly stochastic Poisson process (Cox process) with the intensity

n(θt), or

(ii) Tk = kδ, that is, the observation times are deterministic, with constant length δ of

interarrival intervals.

2.2 Volatility Process

We now specify more precisely the volatility process. Let (R,B(R)) and (R+ × R,B(R+)⊗
B(R)) be measurable spaces with Borel σ-algebras. The volatility process θ = (θt)t≥0 is

defined by the Itô equation

dθt = b(t, θt)dt+ σ(t, θt)dWt +

∫
R

u(θt−, x)(µθ − νθ)(dt, dx), (2.3)

where Wt is a standard Wiener process and µθ = µθ(dt, dx) is a Poisson measure on

(R+ × R,B (R+)⊗ B (R)) with the compensator νθ(dt, dx) = K(dx)dt, where K(dx) is a

σ−finite non-negative measure on (R,B (R)). We assume that Eθ2
0 < ∞, the functions

b(t, z), σ(t, z), and u(z, x) are Lipschitz continuous in z uniformly with respect to other

variables, and

|b(t, z)|+ |σ(t, z)|2 +
∫

R

|u(z, x)|2K(dx) ≤ C(1 + |z|2).

It is well known that under these assumptions (2.3) possesses a unique strong solution

adapted to F, and Eθ2
t < ∞ for any t ≥ 0.
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The generator L of the volatility process is given by

Lf(x) := b(t, x)f ′(x) +
1

2
σ2(t, x)f ′′(x)

+

∫
R

(
f(x+ u(x, y))− f(x)− f ′(x)u(x, y)

)
K(dy).

Before proceeding with the assumptions and main results we shall introduce additional

notation. Set

m(s, t) =

∫ t

s

(
r(θu)− 1

2
v2(θu)

)
du, (2.4)

and

σ2(s, t) =

∫ t

s

v2(θu)du . (2.5)

For simplicity, it is assumed that v2(s, t) is bounded away from zero. Let us denote by ρs,t(y)

the density function of the normal distribution with mean m(s, t) and the variance σ2(s, t):

ρs,t(y) :=
1√

2πσ(s, t)
e
− (y−m(s,t))2

2σ2(s,t) (2.6)

Clearly, ρ is the conditional density of the stock’s log-increments Xt −Xs given θ.

Let F θ = (F θ
t )t≥0 be the right-continuous filtration generated by (θt)t≥0 and augmented

by P-zero sets from F . Denote by Gθ
k a regular version of the conditional distribution of

Tk+1with respect to∗ F θ ∨ G (k) . That is, Gθ
k is the distribution of the time of the next

observation, given previous history, and given θ.

Let N = (Nt)t≥0 be the counting process with interarrival times (Tk − Tk−1)k≥1 , that is

Nt =
∑
k≥1

I(Tk ≤ t) (2.7)

We also assume

Assumption 2.2 The Brownian motion B is independent of
(
θ,N

)
.

3 FILTERING RESULTS

3.1 The main result

For a measurable function f on R such that E|f(θt)| < ∞, define the conditional expectation

estimator πt(f) by

πt(f) := E
(
f(θt)|Gt

)
=

∫
R

f(z)πt(dz), (3.1)

∗Here and below F1 ∨ F2 stands for the σ-algebra generated by the σ−algebras F1 and F2.
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where πt(dz) := dP (θt ≤ z|Gt) is the filtering distribution. (Note that we omit the argument

θt of f in the estimator πt(f)). As in the Bayesian framework, we suppose that the a priori

distribution π0(dx) = P (θ0 ∈ dx) is given.

Let σ{θTk
} be the σ-algebra generated by θTk

. For t > Tk, let us define the following

structure functions :

ψk(f ; t, y, θTk
) := E

(
f(θt)ρTk ,t(y −Xk)φ(Tk, t)

∣∣σ{θTk

} ∨ GTk

)
(3.2)

and its integral with respect to y

ψk(f ; t, θTk
) :=

∫
R

ψk (f ; t, y, θTk
) dy = E

(
f(θt)φ(Tk, t)

∣∣σ{θTk

} ∨ GTk

)
(3.3)

where ρ is given by (2.6) and

φ(t) = n(θt) exp

(
−
∫ s

Tk

n (θu) du

)
if Assumption 2.1 (i) holds (3.4)

φ(t) = 1 if Assumption 2.1 (ii) holds. (3.5)

If f ≡ 1, the argument f in ψ and ψ̄ is replaced by 1.

For t ≥ Tk and a bounded function f , define

Mk (f ; t, πt) :=
πTk

(
ψ̄k (f ; t)

)− πt−(f)πTk

(
ψ̄k (1; t)

)∫∞
t
πTk

(
ψ̄k (1; s)

)
ds

.

The main filtering result from Cvitanić, Liptser and Rozovskii [3] is (specialized to As-

sumption 2.1):

Theorem 3.1 Under our assumptions, for every measurable bounded function f in the do-

main of the generator L such that
∫ t

0
E|Lf(θs)|ds < ∞ for any t ≥ 0, the following system

of equations holds:

1) For every k = 0, 1 . . . , at the observation times we have

πTk+1
(f) =

πTk
(ψk(f ; t, y))

πTk
(ψk(1; t, y))

∣∣∣{ t=Tk+1
y=Xk+1

} (3.6)

Under Assumption 2.1 (i), we have between observation times:

2) For every k = 0, 1 . . . and t ∈]]Tk, Tk+1[[,

dπt(f) = πt(Lf)dt−Mk (f ; t, πt) dt. (3.7)

Under Assumption 2.1 (ii), the second term is zero, that is, we have:

2) For every k = 0, 1 . . . and t ∈]]Tk, Tk+1[[,

dπt(f) = πt(Lf)dt (3.8)
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Remark 3.1 Note that for high-frequency observations, it may be satisfactory to compute

the volatility estimate only at price observation times. In that case we only need to use the

relatively simple Bayes-type recursion formula (3.6), and not the differential equation (3.7)

or (3.8).

Remark 3.2 Clearly, the “structure functions” ψ and ψ̄ are of paramount importance for

computing the posterior distribution of the volatility process. We would like to stress that

these do not involve the observations and could be pre-computed “off-line” using only the a

priori distribution. Then, “on-line”, when the observations become available, one needs only

to plug in the obtained measurements (Tk, Xk). This is important for developing efficient

numerical algorithms.

Remark 3.3 Note that for almost every ω ∈ Ω, filtering equation (3.7) is a deterministic

equation of Kolmogorov’s type, rather then a stochastic partial differential equation arising in

nonlinear filtering of diffusion processes. The well-posedness and regularity of such equations

is well researched in the literature on second order parabolic deterministic integro-differential

equations (see e.g. [17], [21], [14] and the references therein).

3.2 The case of the Markov chain volatility process

In this section we specialize our formulas to the case where the volatility process is modeled

by a continuous time Markov chain.

We assume that the counting process is a Cox process with intensity n(θt), and that

θ = (θt)t≤T is a homogeneous Markov jump process taking values in the finite alphabet A =

{a1, . . . , aM} with the intensity matrix Λ = (λ (ai, aj)) = (λij) and the initial distribution

pq = P (θ0 = aq), q = 1, . . . ,M . (This is one of the two models of the state process discussed

in [7].) In this case,

Lf (θs) =
∑

j

λ (θs, aj) f (aj) .

Denote by θj
t the process θt starting from aj , and

pji (t) := P (θt = ai|θ0 = aj) , πj(t) = P
(
θt = aj

∣∣Gt

)
,

rji (t, z) := E
(
e−

∫ t
0 n(θj

u)duρj
0,t
(z)|θj

t = ai

)
,

where ρj
0,t
(z) is obtained by substituting θj

s for θs in ρ0,t(z). It follows from Theorem 3.1

(for details see Cvitanić, Liptser and Rozovskii [3]), with f (θt) := I{θt=ai}, that

πi(Tk) =
n (ai)

∑
j rji (Tk − Tk−1, Xk −Xk−1) pji (Tk − Tk−1)πj(Tk−1)∑

i,j n (ai) rji (Tk − Tk−1, Xk −Xk−1) pji (Tk − Tk−1) πj(Tk−1)
. (3.9)

This recursion can be easily computed.
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4 Numerical implementation

In this section we consider numerical implementation of the Markov chain example from the

previous section. We will estimate the a priori parameters of the chain, and then we use the

filtering formulas. For simplicity, we set

vt = v(θt) = θt.

First, we introduce a discrete-time approximation dn to the continuous-time volatility process

vt; this will provide an analytical approximation to the transition probabilities pji(t), and

facilitate the Monte Carlo estimation of rji.

4.1 Discrete approximation of vt

We now construct a natural discrete-time Markov process approximation dn of the volatility

process vt, with values from the alphabet {ai}i=1,...,M . We fix a small discrete step ∆ and

define the transition probability matrix Q = (Qij)i,j=1,...,M for the process dn as

Qij =

{
λij ∆, i �= j

1−∑
i	=k λik ∆, i = j.

(4.1)

Here the step ∆ is chosen such that ∆
∑

ij λij < 1. The finite-dimensional distributions of

the process dn converge to that of vt as ∆ → 0.

The probabilities pji(t) = P (vj
t = ai) are estimated using the corresponding probabilities

for the discrete process dn:

p̂ji(t) = P (dmt = ai | d0 = aj) = [ej ×Qmt ](i), (4.2)

where mt =
⌊

t
∆

⌋
, ej denotes a row-vector of length M with all zeros except for the value

one at the j-th position, [v](i) is the i-th element of vector v, and �x� is an integer closest

to x from below.

The process
(
vj

s | vj
t = ai

)
on [0, t) is approximated by its discrete counterpart

(dn | d0 = aj , dmt = ai) on [0, mt). The one-step conditional transitional probabilities for the

latter process are given by

P (dn = ak | dn−1 = ak′, dmt = ai) =

=
P (dn = ak | dn−1 = ak′)P (dmt = ai | dn = ak)∑M

m=1 P (dn = am | dn−1 = ak′)P (dmt = ai | dn = am)
. (4.3)

Here

P (dn = ak | dn−1 = ak′) = [ek′ ×Q](k); (4.4)

P (dmt = ai | dn = ak) = [ek ×QN−n](i). (4.5)
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The only arbitrary choice in our construction is the discrete time step ∆. To approximate

vt on [0, t) we set

∆ = min

{
1

100 max(λij)
,

t

100

}
which ensures that we have on average no less than 100 steps of dn within each interval of

constant volatility vt, yet no less than 100 steps within [0, t).

4.2 Monte Carlo estimation of rji

A Monte Carlo procedure used to estimate the conditional expectation rji is based on the

simulations of the discrete-time process dn defined in the previous section. Introducing the

notation

δk := (Tk − Tk−1) , ∆k := (XTk
−XTk−1

), (4.6)

and

Aj
k :=

∫ δk

0

(
vj

u

)2
du

we see that in estimating rji, we can use

ρj
0,δk

(∆k) =
1√
2πAj

k

exp

{
−
(
∆k − rδk +

1
2
Aj

k

)2
2Aj

k

}
. (4.7)

The only random element here is Aj
k, which can be found given a realization of vt on [0, δk):

Aj
k :=

Nk∑
i=1

a2
(i)(ui − ui−1), (4.8)

where ui are the times of the volatility jumps, Nk is the number of volatility jumps in

the interval [0, δk), v
j
t = a(i) are the volatility values for t ∈ [ui−1, ui) (from the alphabet

{a1, . . . , aM}), u0 = 0, uNk
= δk, a(1) = aj . The condition θj

t = vj
δk

= ai in the definition of

rji implies that a(Nk) = ai.

Similarly, ∫ δk

0

n(vj
u)du =

Nk∑
i=1

n(a(i))(ui − ui−1). (4.9)

We estimate rij by simulating independent realizations of dn on [0, δk) and using equations

(4.8) and (4.9) with {vj
t} replaced by {dn | d0 = aj}.

5 Estimating a priori values of the filter parameters

We now consider the problem of estimating a priori values of the filter parameters —

volatility alphabet A, jump intensities Λ, initial probabilities pi, and observation intensities

N = n(ai), (i, j = 1, . . . ,M) from observations XTk
.
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The idea is to find a process Pt such that

∆Pt ≈ a vt ∆t, (5.1)

for small ∆t. The estimation of piece-wise constant volatility vt is then equivalent to finding

the optimal piece-wise linear approximation L(t) to the process Pt. Distinct slopes of L(t)

will correspond to distinct volatility values; and the rest of the parameters can also be

estimated using L(t). Such a problem can be effectively solved by the Multiscale Trend

Analysis (MTA) of [27].

5.1 Volatility alphabet

Consider the process Pt defined as the sum of the absolute returns between the times Tk:

Pt :=
∑

k:Tk<t

|∆k|, (5.2)

where ∆k := XTk
− XTk−1

. The alphabet estimation procedure is based on the following

result (see Cvitanić, Rozovskii and Zaliapin [4]):

Proposition 5.1 Suppose that the volatility v and the intensity n of observations are con-

stant within the interval [0, t].

(i) If Assumption 2.1 (i) holds, then

Pt

t
√
n
− v√

2

a.s.−→ 0, as n → ∞. (5.3)

(i) If Assumption 2.1 (ii) holds, then

√
δ Pt

t
− v

√
2

π

a.s.−→ 0, as δ → 0. (5.4)

Remark 5.1 The proposition is also true for intervals of the form [t1, t2]. Thus, if volatility

vt is piece-wise constant with values from the alphabet A, and the observational intensity N
is a function of volatility, then Pt is asymptotically a piece-wise linear function with slopes,

in case (i),

si = si(ai) = ai

√
ni

2
(5.5)

within the respective intervals, and with slopes, in case (ii),

si = si(ai) = ai

√
2

π δ
. (5.6)
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Remark 5.2 Barndorff-Neielsen, Graversen and Shephard [2] showed that if Xt is a Brow-

nian seminartingale with vt being a càdlàg process, and observations are made on a regular

grid with a fixed step δ, then under some mild conditions on vt

√
δPt

P−→
√

2

π

∫ t

0

vsds , as δ → 0. (5.7)

If we consider a piece-wise linear process L(t) with slopes defined as in (5.5), (5.6), then

the distinct volatility values ai are uniquely determined by M distinct slopes of L(t). Below

we will use observations to approximate the asymptotic piece-wise linear structure of Pt.

If this approximation has NL distinct linear segments and the observations form a Poisson

process, then according to (5.5) the distinct volatility values can be estimated as

ãi
Poisson = si

√
2

ni
, i = 1, . . . , NL. (5.8)

In case of regular observational grid with step δ we similarly obtain using (5.6)

ãi
Regular = si

√
π δ

2
, i = 1, . . . , NL. (5.9)

From (5.8),(5.9) one obtains a piece-wise constant volatility estimate ṽt with NL distinct

values ãi. If the piece-wise linear approximation L(t) is close to the piece-wise linear limit of

Pt, the estimators ãi should have a multi-modal distribution with each mode corresponding

to a single value of the true alphabet A. To estimate the size M of the alphabet as well

as its elements, the estimated volatility values ãi, i = 1, . . . , NL, should be appropriately

binned into M̂ ≤ NL groups {âi}i=1,...,M̂ . We denote this grouped volatility estimate by v̂t.

(Our binning procedure is somewhat ad-hoc.)

Note that parameters ni, i = 1, . . . , NL, in (5.8), should also be estimated from the data.

Suppose that i-th segment of L(t) has duration Ti and includes mi observations. A natural

estimate of n(i), i = 1, . . . , NL, within the i-th segment of L(t) is

n̂(i) =
mi

Ti
. (5.10)

Below we use this expression to obtain initial estimates ãi, i = 1, . . . , NL, of the alphabet

values.

The main problem in constructing L(t) is that we do not know a priori the intensity of

volatility jumps, which would give an estimate of the number of linear segments within L(t)

(while the problem of constructing an optimal piece-wise linear approximation with given

number of segments is well-studied). Thus, we have to resolve the tradeoff between the detail

and the quality of the piece-wise linear approximation L(t). In general, we want the alphabet

{ai} (the number of distinct slopes) to be as small as possible while the approximation L(t)

be as close to Pt as possible; and these two goals contradict each other. This tradeoff can

be effectively resolved and the approximation L(t) constructed by the Multiscale Trend

Analysis of [27].
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5.2 Initial probabilities, observation intensities, and jump inten-

sities

Let mij (i, j = 1, . . . , M̂) denote the number of observation epochs Tk such that v̂Tk
= aj

and v̂Tk−1
= ai:

mij =

N∑
k=2

δ(v̂Tk
− aj , v̂Tk−1

− ai),

where δ(·, ·) is a discrete delta-function. Similarly we define

Tij =

N∑
k=2

(Tk − Tk−1) δ(v̂Tk
− aj , v̂Tk−1

− ai).

The initial probabilities pi = P (v0 = âi), off-diagonal jump intensities {λij}, i �= j, and

observation intensities ni = n(ai) are estimated as

p̂i =

∑
k Tik∑

j

∑
k Tjk

, i = 1, . . . , M̂ , (5.11)

λ̂ij =
Tii + Tij

mij
, i, j = 1, . . . , M̂, i �= j, (5.12)

n̂i =

∑
k mik∑
k Tik

, i = 1, . . . , M̂. (5.13)

After that, the diagonal jump intensities are estimated as

λ̂ii = −
∑
k 	=i

λ̂ik, i = 1, . . . , M̂.

Remark 5.3 We introduced two different estimators for observation intensity ni given by

Eqs. (5.10) and (5.13). The estimate (5.10) is preliminary, it gives NL estimated values of

intensity, each corresponding to one segment of the piece-wise linear approximation L(t).

This is necessary to obtain a preliminary alphabet estimate {ãi}, i = 1, . . . , NL. On the

other hand, the final expression (5.13) produces M̂ estimated values using the posterior

coarse alphabet {âi}.

5.3 MTA method

Multiscale Trend Analysis (MTA) is a set of applied statistical techniques for time series

analysis that operate with trends — local linear approximations — of the series X(t) at

different scales [27]. Formally, the time series X(t) observed at finite (regular or irregular)

time grid {ti}N
i=1 is represented by a treeMX , whose nodes correspond to linear trends within

X(t). On average, the longer the trend, the higher the corresponding node in the tree. The
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root corresponds to the global linear approximation L0(t), the leaves to the elementary linear

segments within [ti, ti+1], and each internal node to some appropriately chosen trend on an

intermediate scale.

One can use MTA tree to construct a set of piece-wise linear approximations Lk(t),

k = 1, . . . , d, of X(t) with increasing detail. It was shown in [27] that for a self-affine

random walk with Hurst exponent H the fitting error Ek (in L2) of such approximations is

related to the number Nk of their linear segments as Ek = E0 N
−2H
k . In general, the MTA

spectrum — a graph showing Ek as a function of Nk — is a very useful tool for studying

scaling properties of X(t). In particular, it can be used to detect the change of self-affine

scaling (say, change of H with time or with analysis resolution). Here, we will apply MTA

to the process Pt of (5.2). Noticeably, a typical Pt trajectory that corresponds to a Markov

volatility model is not a pure self-affine series. The volatility jumps create a characteristic

scale. Accordignly, the MTA spectrum is governed by the volatility structure while we

consider approximations with long trends (longer than the average duration of intervals of

constant volatility); and by pure Brownian motion at short trends. As a result, a typical

MTA spectrum for the observed trajectories is characterized by a corner point k0, at which

the spectrum slope breaks from some |s| > 1 to |s| = 1; the latter corresponding to a pure

Brownian walk (H = 1/2).

Here we illustrate the alphabet estimation procedure using an example with r = 0.05,

two-valued volatility alphabet {√2 r, 2
√
2 r} ≈ {0.316, 0.632}, transition intensities λ12 =

λ21 = 1, observational intensities ni = 103, and initial probabilities pi = 1/2. A realization

of the process Xt is shown in Fig. 1a; the shaded areas depict intervals with vt = a1. Fig-

ure 1b shows the process Pt, which indeed captures the time-dependent volatility structure.

For visual convenience, we show here the detrended process P̂t, since the monotonicity of

Pt makes it difficult to distinguish between its global upward trend and piece-wise linear

segments we are interested in. The piece-wise linear structure of Pt prominently overcomes

the stochastic noise unavoidably present in Pt.

Next we apply the MTA to construct the set of piece-wise linear approximations Lk(t) for

Pt. The corresponding MTA spectrum is shown in Fig. 2. The relation Ek = E0/Nk is clearly

observed for Nk > 40. For Nk ≤ 20 the spectrum deviates from this line depicting presence

of a non-random structure within Pt. The transition between the two scaling regimes occurs

within the interval between Nk = 22 and Nk = 42, which we denote in the figure as the corner

point 1 and 2 respectively. The first corner point corresponds to the MTA level k = 13,

the second to k = 25. To depict the piece-wise linear structure of Pt we first consider its

piece-wise linear approximation L13(t) at the level k = 13 of the MTA decomposition; that

is at the corner point 1 of the MTA spectrum (see Fig. 2). The approximation L13(t) is

shown in Fig. 1b together with the original process Pt; recall that we extracted the global

trend of Pt from both the functions. One can see that MTA correctly depicted all the major
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linear segments that correspond to the intervals of constant volatility.

Next we estimate the volatility alphabet using the formula (5.8); the raw estimate ṽt

is shown in Fig. 1c; the true volatility values are depicted by dashed horizontal lines. The

distribution of distinct values of ṽt is shown on the right in Fig. 1c: the bimodal structure

of the distribution is obvious. The estimates âi of the alphabet values are obtained as the

averages of ãi within the distinct modes. The resulting alphabet is {0.323, 0.647}, which is

within 3% relative error of the true values. Next, we distribute the raw estimates ãi into the

two bins to obtain the resulting estimate v̂t shown in panel d; indeed it is almost perfect,

missing only one very short volatility interval at t ≈ 15.

The initial probabilities are estimated as p̂1 = 0.56 and p̂2 = 0.44. The jump intensities

as λ̂12 = 0.97 (2% relative error), λ̂21 = 1.03 (3%). The observation intensities as n̂1 = 985.2

(1%), n̂2 = 1012.1 (1%). These estimations are very stable with respect to choosing a

particular corner point; say, they remain within 3% relative error if we choose any point

between k = 13 and k = 25.

6 The combined algorithm

Here is a description of the complete algorithm:

Input: Asset’s log-prices X(Tk), Tk ≤ T .

Step 1. Estimate volatility alphabet.

1.1 Construct the process Pt of Eq. (5.2).

1.2 Construct the MTA decomposition MP of the process Pt and find MTA spec-

trum (Nk, Ek), k = 1, . . . , d.

1.3 Select a corner point k0 of MTA spectrum (a point where the slope of the

spectrum changes from a higher to a lower value); and consider the corre-

sponding piece-wise linear approximation Lk0(t) of Pt with Nk0 segments.

1.4 Calculate preliminary alphabet values {ãi} applying either (5.8) and (5.10)

or (5.9) to the slopes si, i = 1, . . . , Nk0 of the linear segments from Lk0(t).

1.5 Obtain the alphabet estimate M̂ , {âi}i=1,...,M̂ by binning the values {ãi}
according to their multi-modal distribution.

Step 2. Estimate a priori initial probabilities using Eq. (5.11).

Step 3. Estimate a priori transitional intensities using Eq. (5.12).

Step 4. Estimate time-dependent volatility using the filter Eq. (3.9) with a priori

parameters from Steps 1,2,3.

Output: Time dependent distribution pi(Tk) of volatility, i = 1, . . . , M̂ , Tk ≤ T .
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7 Examples

Here we apply our combined algorithm to two price series. First, we analyze the daily

dynamics of General Electric shares traded at NYSE during 1962–2004. Then, we estimate

the volatility of intraday trades for IBM during Nov. 1, 1990 – Jan. 11, 1991. In these

cases, we don’t know the true volatility, or the true model for the stock price. Nevertheless,

we give some indications that the proposed procedure gives reasonable and stable results.

7.1 Daily data: General Electric

Here we estimate the volatility for General Electric company. Specifically, we consider daily

closing prices provided by Wharton Research Data Services [26]. We thus assume that

the observational grid is uniform with step of δ = 1 day (ignoring the fact that longer

intervals do exist between Fridays and Mondays as well as during holidays). The dynamics

of the original prices St ($/share) is shown in Fig. 4a. Below we work with the log-prices

Xt := log10 St. To estimate the volatility alphabet we use only the data during 1962-1998

(see Fig. 4a). MTA spectrum for the process Pt of (5.2) is shown in Fig. 4b. One sees clearly

the transition from a higher absolute slope (|s| ≈ 2) to a lower one (|s| ≈ 1) as the number

Nk of segments in our peace-wise linear decompositions increases. Transition occures within

a broad interval 25 < N < 150, which corresponds to decomposition levels 17 ≤ k ≤ 90.

The results of our estimation are stable with respect to particular choice of the level for

analysis. Figure 4c shows the histograms of initial volatility estimates ãi obtained at level

k = 17. The three-modal structure with modes at about {0.06, 0.1, 0.15} is prominent; a

similar three-modal stucture is observed at level k = 90 (panel d). The same results are

obtained at all intermediate levels 16 < k < 90 (not shown). Thus, our analysis suggests

M̂ = 3, {âi} = {0.06, 0.1, 0.15}, which we use to estimate initial probabilities and jump

intensities:

p̂i = {0.66, 0.26, 0.07}, Λ̂ =

 −0.66 0.16 0.50

1.21 −1.81 0.60

3.58 2.14 −5.72

 [1/year].

The above estimates are used as inputs for the filtering formula. The posterior probabilities

pi(t), i = 2, 3, during 1998-1999 are shown in Fig. 5a. We also show for comparison the

log-price Xk (panel b) and absolute returns |∆k| = |Xk − Xk−1| (panel c). During the

second half of 1998 the market witnessed a significant price drop of the GE shares (panel

b) associated with increased volatility nicely reflected in the dynamics of |∆t| (panel c).
This volatility increase is captured by the posterior probabilities shown in panel a. We

found (not shown) that our results are very stable with respect to the particular choice
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of the three-valued alphabet corresponding to the distribution of Fig. 4 c,d (say, choosing

{âi} = {0.05, 0.08, 0.15}, etc.).

Remark 7.1 The reader could ask why we need the filtering estimate, if we can simply use

estimation based only on price variations. We do a comparison of that type in Cvitanić,

Rozovskii and Zaliapin [4], showing that, in general, the filtering procedure is more stable

and efficient.

7.2 Intraday data: IBM

In this section we estimate intraday volatility using the data for the IBM company during

Nov. 1, 1990 – Jan. 11, 1991. We use the data prior to January 11 to estimate the filter

input parameters, and then apply the filter during January 11 to estimate the volatility.

The data set includes 60,328 transactions; almost all of them occur between 9:30 AM and

16:30 PM. The transaction time is reported up to a second; the average time between two

consecutive transations (we call this interevent time) is 29 sec. In order to construct the

process Pt we preprocessed the data in the following way. First, all interevent times Ti

larger than 2 hours were replaced with random times T̃i from the empirical distribution of

interevent times shorter than 2 hours. This way we removed the long gaps associated with

nights, holidays, and long intraday breaks, and concentrated on the price dynamics during

the business hours. Second, if several transactions with different price were reported within

one second (so they have the same time tag), we separate them by 0.5 seconds; there were

6,548 such cases (10% of the data set).

The histogram of the initial alphabet estimates ãi (Eqs. (5.8) and (5.10)) is shown in

Fig. 6. While there is no striking multimodal structure, the choice of

âi = {0.19, 0.33, 0.53, 0.75}

seems reasonable if one wants to represent the volatility as a Markov jump process. The

corresponding estimates of the filter parameters are:

p̂i = {0.51, 0.31, 0.12, 0.06}, n̂i = {1.62, 2.57, 3.78, 6.18}[1/min],

Λ̂ =


−2.75 0.61 0.88 1.26

1.32 −6.08 2.37 2.39

2.91 2.87 −8.55 2.76

5.65 8.86 5.61 −20.12

 [1/hour].

The filtering results are illustrated in Fig. 7, where we show the estimated volatility

and price of IBM shares during the morning hours on January 11, 1991. The a posteriori
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volatility v̂t is obtained in the following way: first, we find the expected values

E(vTk
) :=

M̂∑
i=1

pi(Tk)âi. (7.1)

Then, we group the posterior expectations (7.1) into M̂ separate values

v̂t :=
{
âi, i = argmink=1,...,M̂ |E(vt)− âk|

}
. (7.2)

The filter detected four volatility bursts. Two of them (9:35AM and 11:40AM) corre-

spond to a high trading intensity; one (9:50AM) to a rapid price increase; and one (10:40AM)

to intensive price oscillations (without the net change). We see that when price changes are

mild (in our example the price only changes by fixed increments of 0.125), the filter effec-

tively uses the information on the trading intensity to make a decision about the current

volatility.
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[3] Cvitanić, J., R. Liptser, and B. Rozovskii (2004), A Filtering Approach to Tracking

Volatility from Prices Observed at Random Times. Preprint.
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Figure 1: Example of estimating a priori values of filter input parameters. a) Asset log-price

Xt (solid line, left axis) and its two-valued volatility vt (dashed line, right axis). Parameters

of the process are {ai} ≈ {0.316, 0.632}, r = 0.05, λ12 = λ21 = 1, n(a1) = n(a2) = 103,

pi = 1/2. b) Process Pt (solid) and its piece-wise linear approximation L13(t) (dashed)

corresponding to the corner point 1 of MTA decomposition (see Fig. 2). The approximation

is offset by 1 upward for comparison. The global linear trend of Pt is extracted from both the

processes for visual convenience. c) Raw volatility estimate ṽt (left part) and distribution

of its distinct values (right part). True alphabet values are depicted by horizontal dashed

lines. d) Final volatility estimate v̂t. True alphabet values are depicted by horizontal dashed

lines. Shaded areas in all panels correspond to intervals with vt = a1 ≈ 0.316.
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Figure 2: MTA spectrum for the process illustrated in Fig. 1a. Shaded lines depict two

scaling regions with the transition zone between two corner points marked in the figure.

The right scaling region has the slope -1, which corresponds to a self-affine random walk

with no persistence. The left region deviates from this scaling depicting a non-random

structure within the process Pt; this structure is due to the characteristic scales of constant

volatility intervals, it can be easily seen in Fig. 1b.
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Figure 3: Filtering synthetic asset price. a) Asset log-price Xt (right axis) and true un-

observed volatility vt (left axis). Distinct volatility values are depicted by shadows: dark

for vt = 0.5, light for vt = 0.3, none for vt = 0.1. b) Aposteriori probabilities p3(t) (dark

squares) and p1(t) (white squares) within the interval shown in a). c) Alphabet estimation.

Histogram of initial volatility estimates ãi clearly has a three-modal structure. Dashed lines

depict true volatility values. Shadows depict three groups used to define âi.
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Figure 4: Estimating volatility for General Electric company during 1962-1998. a) Asset

price St during 1962-2004; market splits are depicted by solid arrows. The shaded interval

1962-1998 is used for alphabet estimation. b) MTA spectrum for the process Pt that corre-

sponds to GE log-price dynamics. The transition from a higher slope (s ≈ −2) to a lower

one (s ≈ −1) as N increases is obvious; it occurres between levels k = 17 and k = 90. c),d)

Histogram of initial volatility estimates ãi at level k = 17 (panel c) and k = 90 (panel d).

Three-modal structure is prominent within this broad range of levels. Similar results are

obtained at all intermediate levels (not shown.)
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Figure 5: Estimating volatility for General Electric company during 1998-1999. a) Posterior

probabilities pi(t), i = 2 (light squares) and i = 3 (dark squares) that correspond to volatility

values v2 = 0.1 and v3 = 0.15. b) Dynamics of the log-price Xt. c) Absolute returns |∆t| of
the log-price Xt.
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